Skip to main content

Methodology for Urine Peptidome Analysis Based on Nano-HPLC Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

  • Protocol
  • First Online:
Peptidomics

Abstract

Urine is a sample of choice for noninvasive biomarkers search because it is easily available in large amounts and its molecular composition provides information on processes in the organism. The high potential of urine peptidomics has been demonstrated for clinical purpose. Several mass spectrometry based approaches have been successfully applied for urine peptidome analysis and potential biomarkers search. Summarizing literature data and our own experience we developed a protocol for comprehensive urine peptidome analysis. The technology includes several stages and consists of urine sample preparation by size exclusion chromatography and identification of featured peptides by nano-HPLC coupled to Fourier transform ion cyclotron resonance mass spectrometry, semiquantitative and statistical data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Filip S, Pontillo C, Peter Schanstra J et al (2014) Urinary proteomics and molecular determinants of chronic kidney disease: possible link to proteases. Expert Rev Proteomics 11:535–548. https://doi.org/10.1586/14789450.2014.926224

    Article  CAS  PubMed  Google Scholar 

  2. Schrader M, Schulz-Knappe P (2001) Peptidomics technologies for human body fluids. Trends Biotechnol 19:S55–S60. https://doi.org/10.1016/S0167-7799(01)01800-5

    Article  CAS  PubMed  Google Scholar 

  3. Ivanov VT, Yatskin ON (2005) Peptidomics: a logical sequel to proteomics. Expert Rev Proteomics 2:463–473. https://doi.org/10.1586/14789450.2.4.463

    Article  CAS  PubMed  Google Scholar 

  4. Schrader M, Schulz-Knappe P, Fricker LD (2014) Historical perspective of peptidomics. EuPA Open Proteom 3:171–182. https://doi.org/10.1016/j.euprot.2014.02.014

    Article  CAS  Google Scholar 

  5. Machtejevas E, Marko-Varga G, Lindberg C et al (2009) Profiling of endogenous peptides by multidimensional liquid chromatography: on-line automated sample cleanup for biomarker discovery in human urine. J Sep Sci 32:2223–2232. https://doi.org/10.1002/jssc.200900058

    Article  CAS  PubMed  Google Scholar 

  6. Yang X, Hu L, Ye M et al (2014) Analysis of the human urine endogenous peptides by nanoparticle extraction and mass spectrometry identification. Anal Chim Acta 829:40–47. https://doi.org/10.1016/j.aca.2014.04.040

    Article  CAS  PubMed  Google Scholar 

  7. Broker ME, Lalmahomed ZS, Roest HP et al (2013) Collagen peptides in urine: a new promising biomarker for the detection of colorectal liver metastases. PLoS One 8:e70918. https://doi.org/10.1371/journal.pone.0070918

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cutillas PR, Norden AG, Cramer R et al (2003) Detection and analysis of urinary peptides by on-line liquid chromatography and mass spectrometry: application to patients with renal Fanconi syndrome. Clin Sci 104:483–490. https://doi.org/10.1042/CS20020342

    Article  CAS  PubMed  Google Scholar 

  9. Ling XB, Lau K, Deshpande C et al (2010) Urine peptidomic and targeted plasma protein analyses in the diagnosis and monitoring of systemic juvenile idiopathic arthritis. Clin Proteomics 6:175–193. https://doi.org/10.1007/s12014-010-9058-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ling XB, Lau K, Kanegaye JT et al (2011) A diagnostic algorithm combining clinical and molecular data distinguishes Kawasaki disease from other febrile illnesses. BMC Med 9:130. https://doi.org/10.1186/1741-7015-9-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nkuipou-Kenfack E, Zurbig P, Mischak H (2016) The long path towards implementation of clinical proteomics: exemplified based on CKD273. Proteomics Clin Appl 11:1600104. https://doi.org/10.1002/prca.201600104

    Article  Google Scholar 

  12. Buhimschi IA, Zhao G, Funai EF et al (2008) Proteomic profiling of urine identifies specific fragments of SERPINA1 and albumin as biomarkers of preeclampsia. Am J Obstet Gynecol 199:551.e1–551.16. https://doi.org/10.1016/j.ajog.2008.07.006

    Article  Google Scholar 

  13. Carty DM, Siwy J, Brennand JE et al (2011) Urinary proteomics for prediction of preeclampsia. Hypertension 57:561–569. https://doi.org/10.1161/HYPERTENSIONAHA.110.164285

    Article  CAS  PubMed  Google Scholar 

  14. Kononikhin AS, Starodubtseva NL, Bugrova AE et al (2016) An untargeted approach for the analysis of the urine peptidome of women with preeclampsia. J Proteome 149:38–43. https://doi.org/10.1016/j.jprot.2016.04.024

    Article  CAS  Google Scholar 

  15. Klein J, Papadopoulos T, Mischak H et al (2014) Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 35:1060–1064. https://doi.org/10.1002/elps.201300327

    Article  CAS  PubMed  Google Scholar 

  16. Thevenot EA, Roux A, Xu Y et al (2015) Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res 14:3322–3335. https://doi.org/10.1021/acs.jproteome.5b00354

    Article  CAS  PubMed  Google Scholar 

  17. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64. https://doi.org/10.1080/01621459.1961.10482090

    Article  Google Scholar 

  18. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60. https://doi.org/10.1214/aoms/1177730491

    Article  Google Scholar 

  19. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.2307/2280779

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by RFBR grants no. 16-54-21011_SNF_а, 17-08-01537 A and SNF grant no. SNF IZLRZ3_163911.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kononikhin, A.S. et al. (2018). Methodology for Urine Peptidome Analysis Based on Nano-HPLC Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. In: Schrader, M., Fricker, L. (eds) Peptidomics. Methods in Molecular Biology, vol 1719. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7537-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7537-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7536-5

  • Online ISBN: 978-1-4939-7537-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics