Skip to main content

Dynamic Susceptibility Contrast MRI in Small Animals

  • Protocol
  • First Online:
Preclinical MRI

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1718))

Abstract

The use of magnetic resonance imaging (MRI) for studying the cerebral perfusion mechanisms is well proved and contrasted in the clinical and research setups. This methodology is a promising tool in assessing numerous brain diseases like intracranial tumors, neurodegeneration processes, mental disorders, injuries and so on. In the preclinical environment, perfusion MRI offers a powerful resource for characterizing pathological models and specially identifying biomarkers to monitor the illness and validate the efficacy of therapeutical approaches. This chapter presents the theoretical bases and experimental protocols of dynamic susceptibility contrast MRI acquisitions for developing perfusion MRI studies in small animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19(7):701–735. https://doi.org/10.1097/00004647-199907000-00001

    Article  CAS  PubMed  Google Scholar 

  2. Le Bihan D (1995) Diffusion, perfusion and functional magnetic resonance imaging. J Mal Vasc 20(3):203–214

    PubMed  Google Scholar 

  3. Le Bihan D (1992) Theoretical principles of perfusion imaging. Application to magnetic resonance imaging. Investig Radiol 27(Suppl 2):S6–11

    Article  Google Scholar 

  4. Jahng GH, Li KL, Ostergaard L, Calamante F (2014) Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 15(5):554–577. https://doi.org/10.3348/kjr.2014.15.5.554

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stewart G (1894) Researches on the circulation time in organs and on the influences which affect it: I–III. J Physiol 15:1–27

    Article  Google Scholar 

  6. Kim SG (2012) Perfusion MR imaging: evolution from initial development to functional studies. NeuroImage 62(2):672–675. https://doi.org/10.1016/j.neuroimage.2012.01.015

    Article  PubMed  PubMed Central  Google Scholar 

  7. MacDonald ME, Frayne R (2015) Cerebrovascular MRI: a review of state-of-the-art approaches, methods and techniques. NMR Biomed 28(7):767–791. https://doi.org/10.1002/nbm.3322

    Article  PubMed  Google Scholar 

  8. Buxton RB (2012) Dynamic models of BOLD contrast. NeuroImage 62(2):953–961. https://doi.org/10.1016/j.neuroimage.2012.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22(6):710–717. https://doi.org/10.1002/jmri.20460

    Article  PubMed  Google Scholar 

  10. Koshimoto Y, Yamada H, Kimura H, Maeda M, Tsuchida C, Kawamura Y, Ishii Y (1999) Quantitative analysis of cerebral microvascular hemodynamics with T2-weighted dynamic MR imaging. J Magn Reson Imaging 9(3):462–467

    Article  CAS  PubMed  Google Scholar 

  11. Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13(4):496–520

    Article  CAS  PubMed  Google Scholar 

  12. Conturo TE, Akbudak E, Kotys MS, Chen ML, Chun SJ, Hsu RM, Sweeney CC, Markham J (2005) Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 22(6):697–703. https://doi.org/10.1002/jmri.20457

    Article  PubMed  Google Scholar 

  13. Borges AR, Lopez-Larrubia P, Marques JB, Cerdan SG (2012) MR imaging features of high-grade gliomas in murine models: how they compare with human disease, reflect tumor biology, and play a role in preclinical trials. AJNR Am J Neuroradiol 33(1):24–36. https://doi.org/10.3174/ajnr.A2959

    Article  CAS  PubMed  Google Scholar 

  14. López-Larrubia P, Cañadillas-Cárdenas E, Metelo AM, Arias N, Martínez-Maestro M, Salguero LA, Cerdán S (2011) Magnetic resonance imaging of gliomas. In: Chen CC (ed) Advances in the biology, imaging and therapies for glioblastoma. InTech, Rijeka, pp 225–250

    Google Scholar 

  15. Liu W, Wang B, Wolfowitz R, Yeh PH, Nathan DE, Graner J, Tang H, Pan H, Harper J, Pham D, Oakes TR, French LM, Riedy G (2013) Perfusion deficits in patients with mild traumatic brain injury characterized by dynamic susceptibility contrast MRI. NMR Biomed 26(6):651–663. https://doi.org/10.1002/nbm.2910

    CAS  PubMed  Google Scholar 

  16. Duong TQ (2013) Magnetic resonance imaging of perfusion-diffusion mismatch in rodent and non-human primate stroke models. Neurol Res 35(5):465–469. https://doi.org/10.1179/1743132813Y.0000000211

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shimizu S (2004) Routes of administration. In: Hans J Hedrich, GBaPP (ed) The laboratory mouse. Academic Press, London, p 14

    Google Scholar 

  18. Gruetter R (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6):804–811

    Article  CAS  PubMed  Google Scholar 

  19. Kanayama S, Kuhara S, Satoh K (1996) In vivo rapid magnetic field measurement and shimming using single scan differential phase mapping. Magn Reson Med 36(4):637–642

    Article  CAS  PubMed  Google Scholar 

  20. Perez-Carro R, Cauli O, Lopez-Larrubia P (2014) Multiparametric magnetic resonance in the assessment of the gender differences in a high-grade glioma rat model. EJNMMI Res 4(1):44. https://doi.org/10.1186/s13550-014-0044-4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Garcia-Palmero I, Lopez-Larrubia P, Cerdan S, Villalobo A (2013) Nuclear magnetic resonance imaging of tumour growth and neovasculature performance in vivo reveals Grb7 as a novel antiangiogenic target. NMR Biomed 26(9):1059–1069. https://doi.org/10.1002/nbm.2918

    Article  CAS  PubMed  Google Scholar 

  22. Yankam Njiwa J, Ratering D, Baltes C, Rudin M (2010) Increasing temporal resolution of DSC perfusion MRI using the analytic image concept. MAGMA 23(4):251–261. https://doi.org/10.1007/s10334-010-0224-9

    Article  PubMed  Google Scholar 

  23. Yin J, Sun H, Yang J, Guo Q (2015) Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast-magnetic resonance imaging. J Magn Reson Imaging 41(4):1071–1078. https://doi.org/10.1002/jmri.24642

    Article  PubMed  Google Scholar 

  24. Duhamel G, Schlaug G, Alsop DC (2006) Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: comparison of physical simulations with in vivo results. Magn Reson Med 55(3):514–523. https://doi.org/10.1002/mrm.20802

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant SAF2014-53739-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar López-Larrubia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

López-Larrubia, P. (2018). Dynamic Susceptibility Contrast MRI in Small Animals. In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7531-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7531-0_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7530-3

  • Online ISBN: 978-1-4939-7531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics