Skip to main content

Basic Pulse Sequences in Magnetic Resonance Imaging

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1718))

Abstract

Magnetic resonance images are obtained by a combination of different radiofrequency pulses and gradient waveforms applied to the subject inside a magnetic field. There are multiple pulse sequences used in clinical and preclinical studies adjusted to whatever physician or researches want to analyze, from basic anatomic images to accurate diagnostic techniques as diffusion, perfusion, or functional imaging. In this chapter, we present the most used radiofrequency pulse combinations of the two groups of sequences available in magnetic resonance imaging: spin-echo and gradient-echo sequences.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352

    Article  CAS  PubMed  Google Scholar 

  2. Aime S, Barge A, Delli Castelli D, Fedeli F, Mortillaro A, Nielsen FU, Terreno E (2002) Paramagnetic lanthanide (III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47(4):639–648

    Article  CAS  PubMed  Google Scholar 

  3. Hancu I, Dixon WT, Woods M, Vinogradov E, Sherry AD, Lenkinski RE (2010) CEST and PARACEST MR contrast agents. Acta Radiol 51(8):910–923. https://doi.org/10.3109/02841851.2010.502126

    Article  PubMed  Google Scholar 

  4. Sun PZ, Sorensen AG (2008) Imaging pH using the chemical exchange saturation transfer (CEST) MRI: correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn Reson Med 60(2):390–397

    Article  PubMed  Google Scholar 

  5. McRae R, Bagchi P, Sumalekshmy S, Fahrni CJ (2009) In situ imaging of metals in cells and tissues. Chem Rev 109(10):4780–4827. https://doi.org/10.1021/cr900223a

    Article  CAS  PubMed  Google Scholar 

  6. Zhang S, Malloy CR, Sherry AD (2005) MRI thermometry based on PARACEST agents. J Am Chem Soc 127(50):17572–17573. https://doi.org/10.1021/ja053799t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148

    Article  CAS  Google Scholar 

  8. Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J Drug Target 6(3):167–174. https://doi.org/10.3109/10611869808997890

    Article  CAS  PubMed  Google Scholar 

  9. Liu F, Laurent S, Fattahi H, Vander Elst L, Muller RN (2011) Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging. Nanomedicine (Lond) 6(3):519–528. https://doi.org/10.2217/nnm.11.16

    Article  CAS  Google Scholar 

  10. Hahn EL (1950) Spin echoes. Phys Rev 80(4):580

    Article  Google Scholar 

  11. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630

    Article  CAS  Google Scholar 

  12. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29(8):688–691

    Article  CAS  Google Scholar 

  13. Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3(6):823–833

    Article  CAS  PubMed  Google Scholar 

  14. Mansfield P, Maudsley A (1976) Planar and line-scan spin imaging by NMR. In: Proc. XIXth Congress Amperen, Heidelberg, pp 247–52

    Google Scholar 

  15. Ernst R, Anderson W (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 37(1):93–102

    Article  CAS  Google Scholar 

  16. Henninger B, Kremser C, Rauch S, Eder R, Judmaier W, Zoller H, Michaely H, Schocke M (2013) Evaluation of liver fat in the presence of iron with MRI using T2* correction: a clinical approach. Eur Radiol 23(6):1643–1649. https://doi.org/10.1007/s00330-012-2745-2

    Article  PubMed  Google Scholar 

  17. Kolnagou A, Natsiopoulos K, Kleanthous M, Ioannou A, Kontoghiorghes GJ (2013) Liver iron and serum ferritin levels are misleading for estimating cardiac, pancreatic, splenic and total body iron load in thalassemia patients: factors influencing the heterogenic distribution of excess storage iron in organs as identified by MRI T2*. Toxicol Mech Methods 23(1):48–56. https://doi.org/10.3109/15376516.2012.727198

    Article  CAS  PubMed  Google Scholar 

  18. Barzin M, Kowsarian M, Akhlaghpoor S, Jalalian R, Taremi M (2012) Correlation of cardiac MRI T2* with echocardiography in thalassemia major. Eur Rev Med Pharmacol Sci 16(2):254–260

    CAS  PubMed  Google Scholar 

  19. Qin Y, Zhu W, Zhan C, Zhao L, Wang J, Tian Q, Wang W (2011) Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2’ mapping. J Huazhong Univ Sci Technol Med Sci 31(4):578–585. https://doi.org/10.1007/s11596-011-0493-1

    Article  CAS  PubMed  Google Scholar 

  20. Mihai G, He X, Zhang X, McCarthy B, Tran T, Pennell M, Blank J, Simonetti OP, Jackson RD, Raman SV (2011) Design and rationale for the study of changes in iron and atherosclerosis risk in Perimenopause. J Clin Exp Cardiol 2:152. https://doi.org/10.4172/2155-9880.1000152

    Article  Google Scholar 

  21. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Salman RA-S, Warach S, Launer LJ, Van Buchem MA, Breteler MM, Group MS (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8(2):165–174

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Calle, D., Navarro, T. (2018). Basic Pulse Sequences in Magnetic Resonance Imaging. In: García Martín, M., López Larrubia, P. (eds) Preclinical MRI. Methods in Molecular Biology, vol 1718. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7531-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7531-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7530-3

  • Online ISBN: 978-1-4939-7531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics