Skip to main content

Biochemical and Biophysical Methods to Examine the Effects of Site-Directed Mutagenesis on Enzymatic Activities and Interprotein Interactions

  • Protocol
  • First Online:
In Vitro Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1498))

  • 6148 Accesses

Abstract

Mutations in proteins often affect interactions with partner molecules, sequentially changing their activities and functions. In order to examine mutagenic effects, we herein describe practical and detailed protocols for enzymatic activity assays using ferredoxin (Fd)-NADP+ reductase (FNR) and sulfite reductase (SiR), which are electron-transferring enzymes for the Calvin cycle and sulfur assimilation in various organisms, respectively. Methods for isothermal titration calorimetry and nuclear magnetic resonance spectroscopy, which are very useful thermodynamically and mechanically for investigating the effects of mutations on intermolecular interactions, are also described with practical examples of the Fd–FNR binding system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wodak SJ, Janin J (2002) Protein modules and protein-protein interaction. Adv Protein Chem 61:21–23

    Google Scholar 

  2. Saitoh T, Ikegami T, Nakayama M, Teshima K, Akutsu H, Hase T (2006) NMR study of the electron transfer complex of plant ferredoxin and sulfite reductase: mapping the interaction sites of ferredoxin. J Biol Chem 281:10482–10488

    Article  CAS  PubMed  Google Scholar 

  3. Kume S, Lee YH, Nakatsuji M, Teraoka Y, Yamaguchi K, Goto Y, Inui T (2014) Fine-tuned broad binding capability of human lipocalin-type prostaglandin D synthase for various small lipophilic ligands. FEBS Lett 588:962–969

    Article  CAS  PubMed  Google Scholar 

  4. Kinoshita M, Kim JY, Kume S, Sakakibara Y, Sugiki T, Kojima C, Kurisu G, Ikegami T, Hase T, Kimata-Ariga Y, Lee YH (2015) Physicochemical nature of interfaces controlling ferredoxin NADP(+) reductase activity through its interprotein interactions with ferredoxin. Biochim Biophys Acta 1847:1200–1211

    Article  CAS  PubMed  Google Scholar 

  5. Kim JY, Lee YH (2015) Sulfur. Springer 61:21–23

    Google Scholar 

  6. Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y, Hase T (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat Struct Biol 8:117–121

    Article  CAS  PubMed  Google Scholar 

  7. Nogues I, Martinez-Julvez M, Navarro JA, Hervas M, Armenteros L, de la Rosa MA, Brodie TB, Hurley JK, Tollin G, Gomez-Moreno C, Medina M (2003) Role of hydrophobic interactions in the flavodoxin mediated electron transfer from photosystem I to ferredoxin-NADP+ reductase in Anabaena PCC 7119. Biochemistry 42:2036–2045

    Article  CAS  PubMed  Google Scholar 

  8. Nogues I, Perez-Dorado I, Frago S, Bittel C, Mayhew SG, Gomez-Moreno C, Hermoso JA, Medina M, Cortez N, Carrillo N (2005) The ferredoxin-NADP(H) reductase from Rhodobacter capsulatus: molecular structure and catalytic mechanism. Biochemistry 44:11730–11740

    Article  CAS  PubMed  Google Scholar 

  9. Lee YH, Ikegami T, Standley DM, Sakurai K, Hase T, Goto Y (2011) Binding energetics of ferredoxin-NADP+ reductase with ferredoxin and its relation to function. Chembiochem 12:2062–2070

    Article  CAS  PubMed  Google Scholar 

  10. Nakayama M, Akashi T, Hase T (2000) Plant sulfite reductase: molecular structure, catalytic function and interaction with ferredoxin. J Inorg Biochem 82:27–32

    Article  CAS  PubMed  Google Scholar 

  11. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  12. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327

    Article  PubMed  Google Scholar 

  13. Maeda M, Lee YH, Ikegami T, Tamura K, Hoshino M, Yamazaki T, Nakayama M, Hase T, Goto Y (2005) Identification of the N- and C-terminal substrate binding segments of ferredoxin-NADP+ reductase by NMR. Biochemistry 44:10644–10653

    Article  CAS  PubMed  Google Scholar 

  14. Lee YH, Tamura K, Maeda M, Hoshino M, Sakurai K, Takahashi S, Ikegami T, Hase T, Goto Y (2007) Cores and pH-dependent dynamics of ferredoxin-NADP+ reductase revealed by hydrogen/deuterium exchange. J Biol Chem 282:5959–5967

    Article  CAS  PubMed  Google Scholar 

  15. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  CAS  PubMed  Google Scholar 

  16. Markova N, Hallen D (2004) The development of a continuous isothermal titration calorimetric method for equilibrium studies. Anal Biochem 331:77–88

    Article  CAS  PubMed  Google Scholar 

  17. Loladze VV, Ermolenko DN, Makhatadze GI (2001) Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Sci 10:1343–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aoki M, Ishimori K, Fukada H, Takahashi K, Morishima I (1998) Isothermal titration calorimetric studies on the associations of putidaredoxin to NADH-putidaredoxin reductase and P450cam. Biochim Biophys Acta 1384:180–188

    Article  CAS  PubMed  Google Scholar 

  19. Bergqvist S, Williams MA, O'Brien R, Ladbury JE (2004) Heat capacity effects of water molecules and ions at a protein-DNA interface. J Mol Biol 336:829–842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Takahisa Ikegami (Yokohama City University, Japan), Prof. Chojiro Kojima (Osaka University, Japan), and Prof. Toshihiko Sugiki (Osaka University, Japan) for their valuable comments on NMR spectroscopy, Dr. Satoshi Kume for the HADDOCK simulation (RIKEN, Japan), and Prof. Yuji Goto for ITC (Osaka University, Japan). Y.-H.L. is supported by a Grant-in-Aid for Young Scientists (B) (15K18518 and 25870407). T.S., J.Y.K., and Y.L. received financial support from a Grant-in-Aid for Scientific Research (B) (24370021) and the Japan Society for the Promotion of Science (13J03956) and (14J04433), respectively. M.K. and J.Y.K. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Ho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kinoshita, M., Kim, J.Y., Lin, Y., Markova, N., Hase, T., Lee, YH. (2017). Biochemical and Biophysical Methods to Examine the Effects of Site-Directed Mutagenesis on Enzymatic Activities and Interprotein Interactions. In: Reeves, A. (eds) In Vitro Mutagenesis. Methods in Molecular Biology, vol 1498. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6472-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6472-7_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6470-3

  • Online ISBN: 978-1-4939-6472-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics