Skip to main content

Virus-Induced Gene Silencing in Diploid and Tetraploid Potato Species

  • Protocol
  • First Online:
Virus-Induced Gene Silencing in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2172))

Abstract

Potato is the world’s fourth largest food crop and a vegetatively propagated model polyploid plant. To facilitate genomic studies in potato, here we describe detailed protocols to silence genes in both diploid potato Solanum bulbocastanum and tetraploid potato cultivars such as Maris Bard, Arran Pilot, Ancilla, and Serrana using tobacco rattle virus (TRV)- or potato virus X (PVX)-induced gene silencing (VIGS) system, respectively. The established VIGS system represents an efficient and powerful approach for functional analysis of genes involved in growth, development, metabolism, and responses to biotic and abiotic stresses in potato.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrell PJ, Meiyalaghan S, Jacobs JM et al (2013) Applications of biotechnology and genomics in potato improvement. Plant Biotechnol J 11(8):907–920

    Article  CAS  PubMed  Google Scholar 

  2. Leisner CP, Hamilton JP, Crisovan E et al (2018) Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J 94(3):562–570

    Article  CAS  PubMed  Google Scholar 

  3. Aversano R, Contaldi F, Ercolano MR et al (2015) The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27(4):954–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. The Potato Genome Sequencing Consortium, Xu X, Pan S et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189

    Google Scholar 

  5. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17(8):449–459

    Article  CAS  PubMed  Google Scholar 

  6. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2(2):109–113

    Article  CAS  PubMed  Google Scholar 

  7. Brigneti G, Martín-Hernández AM, Jin H et al (2004) Virus-induced gene silencing in Solanum species. Plant J 39(2):264–272

    Article  CAS  PubMed  Google Scholar 

  8. Faivre-Rampant O, Gilroy EM, Hrubikova K et al (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134(4):1308–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Senthil-Kumar M, Mysore KS (2011) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol J 9(7):797–806

    Article  CAS  PubMed  Google Scholar 

  10. Dobnik D, Lazar A, Stare T et al (2016) Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity. Plant Methods 12(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical Advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25(2):237–245

    Article  CAS  PubMed  Google Scholar 

  12. MacFarlane SA, Vassilakos N, Brown DJ (1999) Similarities in the genome organization of tobacco rattle virus and pea early-browning virus isolates that are transmitted by the same vector nematode. J Gen Virol 80(1):273–276

    Article  CAS  PubMed  Google Scholar 

  13. Huisman MJ, Linthorst HJM, Bol JF et al (1988) The complete nucleotide sequence of Potato virus X and its homologies at the amino acid level with various plus-stranded RNA viruses. J Gen Virol 69(8):1789–1798

    Article  CAS  PubMed  Google Scholar 

  14. Beck DL, Guilford PJ, Voot DM et al (1991) Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183(2):695–702

    Article  CAS  PubMed  Google Scholar 

  15. Angell SM, Davies C, Baulcombe DC (1996) Cell-to-cell movement of Potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology 216(1):197–201

    Article  CAS  PubMed  Google Scholar 

  16. Chapman S, Kavanagh T, Baulcombe D (1992) Potato virus X as a vector for gene expression in plants. Plant J 2(4):549–557

    CAS  PubMed  Google Scholar 

  17. Brunt AA (1996) Plant viruses online: descriptions and lists from the VIDE database. University of Idaho, Moscow, ID

    Google Scholar 

  18. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10(6):937–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song J, Bradeen JM, Naess SK et al (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A 100(16):9128–9133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown CR, Mojtahedi H, Zhang L-H et al (2009) Independent resistant reactions expressed in root and tuber of potato breeding lines with introgressed resistance to Meloidogyne chitwoodi. Phytopathology 99(9):1085–1089

    Article  CAS  PubMed  Google Scholar 

  21. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven Press, London

    Google Scholar 

  22. Park T-H, Gros J, Sikkema A et al (2005) The late blight resistance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Mol Plant-Microbe Interact 18(7):722–729

    Article  CAS  PubMed  Google Scholar 

  23. van der Vossen EAG, Gros J, Sikkema A et al (2005) The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44(2):208–222

    Article  PubMed  Google Scholar 

  24. Liu Z, Halterman D (2006) Identification and characterization of RB-orthologous genes from the late blight resistant wild potato species Solanum verrucosum. Physiol Mol Plant Pathol 69(4–6):230–239

    Article  CAS  Google Scholar 

  25. Vleeshouwers VG, Rietman H, Krenek P et al (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 3(8):e2875

    Article  PubMed  PubMed Central  Google Scholar 

  26. van der Vossen E, Sikkema A, Hekkert B et al (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36(6):867–882

    Article  PubMed  Google Scholar 

  27. Zhao J, Liu Q, Hu P et al (2016) An efficient Potato virus X-based microRNA silencing in Nicotiana benthamiana. Sci Rep 6:20573

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Schiff M, Marathe R et al (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30(4):415–429

    Article  CAS  PubMed  Google Scholar 

  29. Sha A, Zhao J, Yin K et al (2014) Virus-based microRNA silencing in plants. Plant Physiol 164(1):36–47

    Article  CAS  PubMed  Google Scholar 

  30. Zhao J, Liu Y (2016) Virus-based MicroRNA silencing. Bio-protocol 6(2):e1714

    Article  Google Scholar 

  31. Page JE, Hause G, Raschke M et al (2004) Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiol 134(4):1401–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the NRSP-6 US Potato Genebank for providing the wild and cultivated potato species and Dr. Yule Liu from Tsinghua University for providing the TRV1 and TRV2e vectors. This work was supported by a startup fund from the Texas A&M AgriLife Research and the Hatch Project TEX0-1-9675 from USDA National Institute of Food and Agriculture to JS, the scholarship 201707877008 from China Scholarship Council to HJ, and the scholarship 201708130105 from China Scholarship Council to GW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqi Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, J., Jiang, H., Wang, G., Wang, Z., Dong, J., Song, J. (2020). Virus-Induced Gene Silencing in Diploid and Tetraploid Potato Species. In: Courdavault, V., Besseau, S. (eds) Virus-Induced Gene Silencing in Plants. Methods in Molecular Biology, vol 2172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0751-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0751-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0750-3

  • Online ISBN: 978-1-0716-0751-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics