Skip to main content

A Transposon-Based Mouse Model of Hepatocellular Carcinoma via Hydrodynamic Tail Vein Injection

  • Protocol
  • First Online:
Kupffer Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2164))

Abstract

Transgenic mouse are reliable, convenient models for studying human hepatocellular carcinoma (HCC). The development of a synthetically engineered Sleeping Beauty (SB) transposon system further enables the viral-free, efficient delivery of desired oncogenes to mouse tissues. Here, we describe an SB transposon-based approach to induce HCC in mice by expressing a hyperactive form of N-RAS, N-RASG12V, while silencing the endogenous Trp53 gene via hydrodynamic tail vein injection, a method to rapidly deliver naked plasmids to mouse liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet 391(10127):1301–1314. S0140-6736(18)30010-2 [pii]

    Article  Google Scholar 

  3. He L, Tian DA, Li PY et al (2015) Mouse models of liver cancer: progress and recommendations. Oncotarget 6(27):23306–23322. https://doi.org/10.18632/oncotarget.4202. eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  4. Suda T, Liu D (2007) Hydrodynamic gene delivery: its principles and applications. Mol Ther 15(12):2063–2069. S1525-0016(16)32719-8 [pii]

    Article  CAS  Google Scholar 

  5. Duan M, Hao J, Cui S et al (2018) Diverse modes of clonal evolution in HBV-related hepatocellular carcinoma revealed by single-cell genome sequencing. Cell Res 28(3):359–373. https://doi.org/10.1038/cr.2018.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carlson CM, Frandsen JL, Kirchhof N et al (2005) Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. Proc Natl Acad Sci U S A 102(47):17059–17064. https://doi.org/10.1073/pnas.0502974102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yant SR, Meuse L, Chiu W et al (2000) Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25(1):35–41. https://doi.org/10.1038/75568

    Article  CAS  PubMed  Google Scholar 

  8. Ivics Z, Hackett PB, Plasterk RH et al (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510. S0092-8674(00)80436-5 [pii]

    Article  CAS  Google Scholar 

  9. Yant SR, Park J, Huang Y et al (2004) Mutational analysis of the N-terminal DNA-binding domain of Sleeping Beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol 24(20):9239–9247. https://doi.org/10.1128/MCB.24.20.9239-9247.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heindryckx F, Colle I, Van Vlierberghe H (2009) Experimental mouse models for hepatocellular carcinoma research. Int J Exp Pathol 90(4):367–386. https://doi.org/10.1111/j.1365-2613.2009.00656.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keng VW, Tschida BR, Bell JB et al (2011) Modeling hepatitis B virus X-induced hepatocellular carcinoma in mice with the Sleeping Beauty transposon system. Hepatology 53(3):781–790. https://doi.org/10.1002/hep.24091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chung SI, Moon H, Ju HL et al (2016) Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget 7(6):7354–7366. https://doi.org/10.18632/oncotarget.6931. eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479(7374):547–551. https://doi.org/10.1038/nature10599

    Article  CAS  Google Scholar 

  14. Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14(5):359–370. https://doi.org/10.1038/nrc3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Teramoto T, Satonaka K, Kitazawa S et al (1994) P53 gene abnormalities are closely related to hepatoviral infections and occur at a late stage of hepatocarcinogenesis. Cancer Res 54(1):231–235

    CAS  PubMed  Google Scholar 

  16. Schulze K, Imbeaud S, Letouze E et al (2015) Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 47(5):505–511. https://doi.org/10.1038/ng.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiesner SM, Decker SA, Larson JD et al (2009) De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res 69(2):431–439. https://doi.org/10.1158/0008-5472.CAN-08-1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rudalska R, Dauch D, Longerich T et al (2014) In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med 20(10):1138–1146. https://doi.org/10.1038/nm.3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tordella L, Khan S, Hohmeyer A et al (2016) SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. Genes Dev 30(19):2187–2198. gad.286112.116 [pii]

    Article  CAS  Google Scholar 

  20. Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  21. Schlageter M, Terracciano LM, D’Angelo S et al (2014) Histopathology of hepatocellular carcinoma. World J Gastroenterol 20(43):15955–15964. https://doi.org/10.3748/wjg.v20.i43.15955

    Article  PubMed  PubMed Central  Google Scholar 

  22. Naas T, Ghorbani M, Alvarez-Maya I et al (2005) Characterization of liver histopathology in a transgenic mouse model expressing genotype 1a hepatitis C virus core and envelope proteins 1 and 2. J Gen Virol 86(Pt 8):2185–2196. 86/8/2185 [pii]

    Article  CAS  Google Scholar 

  23. Brown RW, Chirala R (1995) Utility of microwave-citrate antigen retrieval in diagnostic immunohistochemistry. Mod Pathol 8(5):515–520

    CAS  PubMed  Google Scholar 

  24. Shafizadeh N, Ferrell LD, Kakar S (2008) Utility and limitations of glypican-3 expression for the diagnosis of hepatocellular carcinoma at both ends of the differentiation spectrum. Mod Pathol 21(8):1011–1018. https://doi.org/10.1038/modpathol.2008.85

    Article  CAS  PubMed  Google Scholar 

  25. Luo Y, Ren F, Liu Y et al (2015) Clinicopathological and prognostic significance of high Ki-67 labeling index in hepatocellular carcinoma patients: a meta-analysis. Int J Clin Exp Med 8(7):10235–10247

    PubMed  PubMed Central  Google Scholar 

  26. Langford DJ, Bailey AL, Chanda ML et al (2010) Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7(6):447–449. https://doi.org/10.1038/nmeth.1455

    Article  CAS  PubMed  Google Scholar 

  27. Paljarvi L, Garcia JH, Kalimo H (1979) The efficiency of aldehyde fixation for electron microscopy: stabilization of rat brain tissue to withstand osmotic stress. Histochem J 11(3):267–276. https://doi.org/10.1007/bf01005026

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Vernia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, S., Vernia, S. (2020). A Transposon-Based Mouse Model of Hepatocellular Carcinoma via Hydrodynamic Tail Vein Injection. In: Aouadi, M., Azzimato, V. (eds) Kupffer Cells. Methods in Molecular Biology, vol 2164. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0704-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0704-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0703-9

  • Online ISBN: 978-1-0716-0704-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics