Skip to main content

Proteomic Approaches to Identify Cold-Regulated Plasma Membrane Proteins

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2156))

Abstract

Plasma membrane is the primary determinant of freezing tolerance in plants because of its central role in freeze–thaw cycle. Changes in plasma membrane protein composition have been one of the major research areas in plant cold acclimation. To obtain comprehensive profiles of the plasma membrane proteomes and their changes during the cold acclimation process, a plasma membrane purification method using a dextran–polyethylene glycol two polymer system and a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for the plasma membrane proteins are described. The proteomic results obtained are further applied to label-free protein semiquantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levitt J (1980) Response of plants to environmental stresses. J Range Manag 5:188–228

    Google Scholar 

  2. Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223

    Article  CAS  Google Scholar 

  3. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  4. Steponkus PL (1984) Role of plasma membrane in cold acclimation and freezing injury in plants. Annu Rev Plant Physiol 35:543–584

    Article  CAS  Google Scholar 

  5. Webb MS, Uemura M, Steponkus PL (1994) A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance. Plant Physiol 104:467–478

    Article  CAS  Google Scholar 

  6. Uemura M, Tominaga Y, Nakagawara C et al (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    Article  CAS  Google Scholar 

  7. Yoshida S, Uemura M (1984) Protein and lipid compositions of isolated plasma membranes from orchard grass (DactyIis glomerata L.) and changes during cold acclimation. Plant Physiol 75:31–37

    Article  CAS  Google Scholar 

  8. Uemura M, Yoshida S (1984) Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 75:818–826

    Article  CAS  Google Scholar 

  9. Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 83:761–767

    Article  CAS  Google Scholar 

  10. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30

    Article  CAS  Google Scholar 

  11. Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154

    Article  CAS  Google Scholar 

  12. Minami A, Fujiwara M, Furuto A et al (2009) Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. Plant Cell Physiol 50:341–359

    Article  CAS  Google Scholar 

  13. Mazars C, Thion L, Thuleau P et al (1997) Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22:413–420

    Article  CAS  Google Scholar 

  14. Orvar BL, Sangwan V, Omann F et al (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794

    Article  CAS  Google Scholar 

  15. Sangwan V, Foulds I, Singh J et al (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J 27:1–12

    Article  CAS  Google Scholar 

  16. Welti R, Li W, Li M et al (2002) Profiling membrane lipids in plant stress responses: role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  CAS  Google Scholar 

  17. Li W, Li M, Zhang W et al (2004) The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433

    Article  Google Scholar 

  18. Yamazaki T, Kawamura Y, Minami A et al (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–3404

    Article  CAS  Google Scholar 

  19. Kondo M, Takahashi D, Minami A et al (2012) Function of Arabidopsis dynamin-related proteins IE during cold acclimation. Cryobiol Cryotechnol 58:105–111. (In Japanese with English summary)

    Google Scholar 

  20. Miki Y, Takahashi D, Kawamura Y et al (2018) Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteome 197:71–81

    Article  Google Scholar 

  21. Takahashi D, Kawamura Y, Yamashita T et al (2012) Detergent-resistant plasma membrane proteome in oat and rye: similarities and dissimilarities between two monocotyledonous plants. J Proteome Res 11:1654–1665

    Article  CAS  Google Scholar 

  22. Takahashi D, Li B, Nakayama T et al (2013) Plant plasma membrane proteomics for improving cold tolerance. Front Plant Sci 4:90

    PubMed  PubMed Central  Google Scholar 

  23. Nakayama T, Takahashi D, Kawamura Y et al (2013) Compositional changes in plasma membrane proteins in Brachypodium distachyon during cold acclimation. Cryobiol Cryotechnol 59:61–65. (In Japanese with English summary)

    Google Scholar 

  24. Kasuga J, Takahashi D, Kawamura Y et al. (2012) Proteomic analysis of seasonal cold-deacclimation process in poplar phloem and xylem tissues. Abstract of Plant and Microbe Adaptation to Cold 2012 (O-18)

    Google Scholar 

  25. Li B, Takahashi D, Kawamura Y et al (2012) Comparison of plasma membrane proteomic changes of Arabidopsis suspension cells (T87 line) after cold and abscisic acid treatment in association with freezing tolerance development. Plant Cell Physiol 53:542–554

    Google Scholar 

  26. Ceballos-Laita L, Gutierrez-Carbonell E, Takahashi D et al (2018) Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses. J Proteome 170:117–129

    Article  CAS  Google Scholar 

  27. Gutierrez-Carbonell E, Takahashi D, Lüthje S et al (2016) A shotgun proteomic approach reveals that Fe deficiency causes marked changes in the protein profiles of plasma membrane and detergent-resistant microdomain preparations from Beta vulgaris roots. J Proteome Res 15:2510–2524

    Article  CAS  Google Scholar 

  28. Gutierrez-Carbonell E, Takahashi D, Lattanzio G et al (2014) The distinct functional roles of the inner and outer chloroplast envelope of Pea (Pisum sativum) as revealed by proteomic approaches. J Proteome Res 13:2941–2953

    Article  CAS  Google Scholar 

  29. Takahashi D, Li B, Nakayama T, Kawamura Y et al (2014) Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS. In: Novo JVJ, Komatsu S, Weckwerth W, Wjienkoopeds S (eds) Methods in molecular biology (plant proteomics: methods and protocols), 2nd edn. Springer Science + Business Media, LLC, New York, pp 481–498

    Chapter  Google Scholar 

  30. Schwacke R, Schneider A, van der Graaff E, Fischer K et al (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  CAS  Google Scholar 

  31. Hooper CM, Castleden IR, Tanz SK et al (2016) SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45:D1064–D1074

    Article  Google Scholar 

  32. Tian T, Liu Y, Yan H et al (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 45:W122–W129

    Article  CAS  Google Scholar 

  33. Horton P, Park KJ, Obayashi T et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  Google Scholar 

  34. Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335

    Article  Google Scholar 

  35. Sun Q, Zybailov B, Majeran W et al (2008) PPDB, the Plant Proteomics Database at Cornell. Nucleic Acids Res 37:D969–D974

    Article  Google Scholar 

  36. Lalonde S, Sero A, Pratelli R et al (2010) A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2. Front Physiol 1:24

    Article  CAS  Google Scholar 

  37. Ogata H, Goto S, Sato K et al (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34

    Article  CAS  Google Scholar 

  38. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  39. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Research Fellowship for Young Scientists (#247373 to D.T.) and Grants-in-Aid for Scientific Research (#22120003, #24370018, #17H03961 to M.U. and Y.K.) from JSPS, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matsuo Uemura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kamal, M.M., Takahashi, D., Nakayama, T., Miki, Y., Kawamura, Y., Uemura, M. (2020). Proteomic Approaches to Identify Cold-Regulated Plasma Membrane Proteins. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 2156. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0660-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0660-5_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0659-9

  • Online ISBN: 978-1-0716-0660-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics