Skip to main content

History and Trends of 3D Bioprinting

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2140))

Abstract

The field of bioprinting is rapidly evolving as researchers innovate and drive the field forward. This chapter provides a brief overview of the history of bioprinting from the first described printer system in the early 2000s to present-day relatively inexpensive commercially available units and considers the current state of the field and emerging trends, including selected applications and techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161. https://doi.org/10.1016/S0167-7799(03)00033-7

    Article  CAS  PubMed  Google Scholar 

  2. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T (2004) Inkjet printing for high-throughput cell patterning. Biomaterials 25(17):3707–3715. https://doi.org/10.1016/j.biomaterials.2003.10.052

    Article  CAS  PubMed  Google Scholar 

  3. Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99. https://doi.org/10.1016/j.biomaterials.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  4. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174. https://doi.org/10.1016/j.biomaterials.2008.12.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917. https://doi.org/10.1016/j.biomaterials.2009.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moldovan NI, Hibino N, Nakayama K (2017) Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B Rev 23(3):237–244. https://doi.org/10.1089/ten.TEB.2016.0322

    Article  CAS  PubMed  Google Scholar 

  7. Pages E, Remy M, Keriquiel V, Correa M, Guillotin B, Guillemot F (2015) Creation of highly defined mesenchymal stem cell patterns in three dimensions by laser-assisted bioprinting. J Nanotechnol Eng Med 6(2):21006

    Article  Google Scholar 

  8. Breslin S, O’Driscoll L (2016) The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Oncotarget 7(29):45745–45756. https://doi.org/10.18632/oncotarget.9935

    Article  PubMed  PubMed Central  Google Scholar 

  9. Begley CG, Ellis LM (2012) Drug development: raise standards for preclinical cancer research. Nature 483(7391):531–533. https://doi.org/10.1038/483531a

    Article  CAS  PubMed  Google Scholar 

  10. Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18(5–6):240–249. https://doi.org/10.1016/j.drudis.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  11. Sun T, Jackson S, Haycock JW, MacNeil S (2006) Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol 122(3):372–381. https://doi.org/10.1016/j.jbiotec.2005.12.021

    Article  CAS  PubMed  Google Scholar 

  12. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610. https://doi.org/10.1016/j.cell.2007.08.006

    Article  CAS  PubMed  Google Scholar 

  13. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224. https://doi.org/10.1038/nrm1858

    Article  CAS  PubMed  Google Scholar 

  14. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319. https://doi.org/10.1038/nbt.3413

    Article  CAS  PubMed  Google Scholar 

  15. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  16. Bartold PM, McCulloch CA, Narayanan AS, Pitaru S (2000) Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 24:253–269

    Article  CAS  Google Scholar 

  17. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689. https://doi.org/10.1089/107632701753337645

    Article  CAS  PubMed  Google Scholar 

  18. Aubin H, Nichol JW, Hutson CB, Bae H, Sieminski AL, Cropek DM, Akhyari P, Khademhosseini A (2010) Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31(27):6941–6951. https://doi.org/10.1016/j.biomaterials.2010.05.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo C, Kaufman LJ (2007) Flow and magnetic field induced collagen alignment. Biomaterials 28(6):1105–1114. https://doi.org/10.1016/j.biomaterials.2006.10.010

    Article  CAS  PubMed  Google Scholar 

  20. Butcher AL, Offeddu GS, Oyen ML (2014) Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends Biotechnol 32(11):564–570. https://doi.org/10.1016/j.tibtech.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  21. Thayer PS, Verbridge SS, Dahlgren LA, Kakar S, Guelcher SA, Goldstein AS (2016) Fiber/collagen composites for ligament tissue engineering: influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells. J Biomed Mater Res A 104(8):1894–1901. https://doi.org/10.1002/jbm.a.35716

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez-Vicente M, Calle W, Ferrandiz S, Conejero A (2016) Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print Addit Manufact 3(3):183–192

    Article  Google Scholar 

  23. Lubombo C, Huneault M (2018) Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts. Mater Today Commun 17:214–228

    Article  CAS  Google Scholar 

  24. Maiullari F, Costantini M, Milan M, Pace V, Chirivi M, Maiullari S, Rainer A, Baci D, Marei HE, Seliktar D, Gargioli C, Bearzi C, Rizzi R (2018) A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 8(1):13532. https://doi.org/10.1038/s41598-018-31848-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tijore A, Irvine SA, Sarig U, Mhaisalkar P, Baisane V, Venkatraman S (2018) Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication 10(2):025003. https://doi.org/10.1088/1758-5090/aaa15d

    Article  CAS  PubMed  Google Scholar 

  26. Tsukamoto Y, Akagi T, Shima F, Akashi M (2017) Fabrication of orientation-controlled 3D tissues using a layer-by-layer technique and 3D printed a thermoresponsive gel frame. Tissue Eng Part C Methods 23(6):357–366. https://doi.org/10.1089/ten.TEC.2017.0134

    Article  CAS  PubMed  Google Scholar 

  27. Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32(12):1728–1743. https://doi.org/10.1007/s10439-004-7825-2

    Article  PubMed  Google Scholar 

  28. Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA (2016) Bioprinting of 3D convoluted renal proximal tubules on Perfusable chips. Sci Rep 6:34845. https://doi.org/10.1038/srep34845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu H, Zhou H, Lan H, Liu T, Liu X, Yu H (2017) 3D printing of artificial blood vessel: study on multi-parameter optimization design for vascular molding effect in alginate and gelatin. Micromachines (Basel) 8(8):237. https://doi.org/10.3390/mi8080237

    Article  Google Scholar 

  30. Byron A, Randles MJ, Humphries JD, Mironov A, Hamidi H, Harris S, Mathieson PW, Saleem MA, Satchell SC, Zent R, Humphries MJ, Lennon R (2014) Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J Am Soc Nephrol 25(5):953–966. https://doi.org/10.1681/ASN.2013070795

    Article  PubMed  PubMed Central  Google Scholar 

  31. Coulouarn C, Corlu A, Glaise D, Guenon I, Thorgeirsson SS, Clement B (2012) Hepatocyte-stellate cell cross-talk in the liver engenders a permissive inflammatory microenvironment that drives progression in hepatocellular carcinoma. Cancer Res 72(10):2533–2542. https://doi.org/10.1158/0008-5472.CAN-11-3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jobling P, Pundavela J, Oliveira SM, Roselli S, Walker MM, Hondermarck H (2015) Nerve-Cancer cell cross-talk: a novel promoter of tumor progression. Cancer Res 75(9):1777–1781. https://doi.org/10.1158/0008-5472.CAN-14-3180

    Article  CAS  PubMed  Google Scholar 

  33. Bourget JM, Kerouredan O, Medina M, Remy M, Thebaud NB, Bareille R, Chassande O, Amedee J, Catros S, Devillard R (2016) Patterning of endothelial cells and mesenchymal stem cells by laser-assisted bioprinting to study cell migration. Biomed Res Int 2016:3569843. https://doi.org/10.1155/2016/3569843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang TQ, Qu X, Liu J, Chen S (2014) 3D printing of biomimetic microstructures for cancer cell migration. Biomed Microdevices 16(1):127–132. https://doi.org/10.1007/s10544-013-9812-6

    Article  PubMed  PubMed Central  Google Scholar 

  35. Byambaa B, Annabi N, Yue K, Trujillo-de Santiago G, Alvarez MM, Jia W, Kazemzadeh-Narbat M, Shin SR, Tamayol A, Khademhosseini A (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6(16). https://doi.org/10.1002/adhm.201700015

  36. Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68. https://doi.org/10.1016/j.biomaterials.2016.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, Vincent PA, Dai G (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35(28):8092–8102. https://doi.org/10.1016/j.biomaterials.2014.05.083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee VK, Lanzi AM, Haygan N, Yoo SS, Vincent PA, Dai G (2014) Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 7(3):460–472. https://doi.org/10.1007/s12195-014-0340-0

    Article  CAS  PubMed  Google Scholar 

  39. Cui H, Zhu W, Nowicki M, Zhou X, Khademhosseini A, Zhang LG (2016) Hierarchical fabrication of engineered vascularized bone biphasic constructs via dual 3D bioprinting: integrating regional bioactive factors into architectural design. Adv Healthc Mater 5(17):2174–2181. https://doi.org/10.1002/adhm.201600505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arnold F, West DC (1991) Angiogenesis in wound healing. Pharmacol Ther 52(3):407–422. https://doi.org/10.1016/0163-7258(91)90034-j

    Article  CAS  PubMed  Google Scholar 

  41. Steed DL (1997) The role of growth factors in wound healing. Surg Clin North Am 77(3):575–586. https://doi.org/10.1016/s0039-6109(05)70569-7

    Article  CAS  PubMed  Google Scholar 

  42. Bier E, De Robertis EM (2015) Embryo development. BMP gradients: a paradigm for morphogen-mediated developmental patterning. Science 348(6242):aaa5838. https://doi.org/10.1126/science.aaa5838

    Article  CAS  PubMed  Google Scholar 

  43. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO (2016) The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 49:10–24. https://doi.org/10.1016/j.matbio.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  44. Devreotes P, Horwitz AR (2015) Signaling networks that regulate cell migration. Cold Spring Harb Perspect Biol 7(8):a005959. https://doi.org/10.1101/cshperspect.a005959

    Article  PubMed  PubMed Central  Google Scholar 

  45. Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25(9):556–566. https://doi.org/10.1016/j.tcb.2015.06.003

    Article  PubMed  Google Scholar 

  46. Faia-Torres AB, Guimond-Lischer S, Rottmar M, Charnley M, Goren T, Maniura-Weber K, Spencer ND, Reis RL, Textor M, Neves NM (2014) Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials 35(33):9023–9032. https://doi.org/10.1016/j.biomaterials.2014.07.015

    Article  CAS  PubMed  Google Scholar 

  47. Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, Lu TJ, Xu F (2016) Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients. Crit Rev Biotechnol 36(3):553–565. https://doi.org/10.3109/07388551.2014.993588

    Article  CAS  PubMed  Google Scholar 

  48. Wang PY, Clements LR, Thissen H, Tsai WB, Voelcker NH (2015) Screening rat mesenchymal stem cell attachment and differentiation on surface chemistries using plasma polymer gradients. Acta Biomater 11:58–67. https://doi.org/10.1016/j.actbio.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  49. Han F, Zhou F, Yang X, Zhao J, Zhao Y, Yuan X (2015) A pilot study of conically graded chitosan-gelatin hydrogel/PLGA scaffold with dual-delivery of TGF-beta1 and BMP-2 for regeneration of cartilage-bone interface. J Biomed Mater Res B Appl Biomater 103(7):1344–1353. https://doi.org/10.1002/jbm.b.33314

    Article  CAS  PubMed  Google Scholar 

  50. Samavedi S, Vaidya P, Gaddam P, Whittington AR, Goldstein AS (2014) Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Biotechnol Bioeng 111(12):2549–2559. https://doi.org/10.1002/bit.25299

    Article  CAS  PubMed  Google Scholar 

  51. Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC, Jungst T, Malda J, Mironov VA, Nakayama K, Ovsianikov A, Sun W, Takeuchi S, Yoo JJ, Woodfield TBF (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11(1):013001. https://doi.org/10.1088/1758-5090/aaec52

    Article  CAS  PubMed  Google Scholar 

  52. Williams D, Thayer P, Martinez H, Gatenholm E, Khademhosseini A (2018) A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. Bioprinting 9:19–36

    Article  Google Scholar 

  53. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  54. Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with Nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496. https://doi.org/10.1021/acs.biomac.5b00188

    Article  CAS  PubMed  Google Scholar 

  55. Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A (2016) Bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002

    Article  CAS  PubMed  Google Scholar 

  56. Hilderbrand AM, Ovadia EM, Rehmann MS, Kharkar PM, Guo C, Kloxin AM (2016) Biomaterials for 4D stem cell culture. Curr Opin Solid State Mater Sci 20(4):212–224. https://doi.org/10.1016/j.cossms.2016.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miao S, Cui H, Nowicki M, Lee SJ, Almeida J, Zhou X, Zhu W, Yao X, Masood F, Plesniak MW, Mohiuddin M, Zhang LG (2018) Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation. Biofabrication 10(3):035007. https://doi.org/10.1088/1758-5090/aabe0b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Castro NJ, Meinert C, Levett P, Hutmacher D (2017) Current developments in multifunctional smart materials for 3D/4D bioprinting. Curr Opin Biomed Eng 2:67–75

    Article  Google Scholar 

  59. Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N (2018) 3D and 4D bioprinting of the myocardium: current approaches, challenges, and future prospects. Biomed Res Int 2018:6497242. https://doi.org/10.1155/2018/6497242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim S, Laschi C, Trimmer B (2013) Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31(5):287–294. https://doi.org/10.1016/j.tibtech.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  61. Majiki C (2014) Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 1(1):5–11

    Article  Google Scholar 

  62. Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617):451–455. https://doi.org/10.1038/nature19100

    Article  CAS  PubMed  Google Scholar 

  63. Lee H, Cho DW (2016) One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 16(14):2618–2625. https://doi.org/10.1039/c6lc00450d

    Article  CAS  PubMed  Google Scholar 

  64. Knowlton S, Yenilmez B, Tasoglu S (2016) Towards single-step biofabrication of organs on a Chip via 3D printing. Trends Biotechnol 34(9):685–688. https://doi.org/10.1016/j.tibtech.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  65. Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Shrike Zhang Y, Shin SR, Calzone G, Annabi N, Shupe TD, Bishop CE, Atala A, Dokmeci MR, Khademhosseini A (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8(1):014101. https://doi.org/10.1088/1758-5090/8/1/014101

    Article  CAS  PubMed  Google Scholar 

  67. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 113(12):3179–3184. https://doi.org/10.1073/pnas.1521342113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Thayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thayer, P., Martinez, H., Gatenholm, E. (2020). History and Trends of 3D Bioprinting. In: Crook, J.M. (eds) 3D Bioprinting. Methods in Molecular Biology, vol 2140. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0520-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0520-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0519-6

  • Online ISBN: 978-1-0716-0520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics