Skip to main content

Expressed Protein Ligation: General Experimental Protocols

  • Protocol
  • First Online:
Book cover Expressed Protein Ligation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2133))

Abstract

Expressed protein ligation allows for the attachment of a chemically labeled peptide to the N- or C-terminus of a recombinant protein. In this book chapter, the practical considerations involved in using this protein engineering technology are described. In particular, approaches used to design optimal ligation sites are discussed. In addition, several methods used to generate the reactive fragments required for EPL are highlighted in practical details. Finally, strategies that one can implement to achieve efficient ligation reactions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960. https://doi.org/10.1146/annurev.biochem.69.1.923

    Article  CAS  PubMed  Google Scholar 

  2. Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci U S A 96(18):10068–10073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marcaurelle LA, Mizoue LS, Wilken J, Oldham L, Kent SB, Handel TM, Bertozzi CR (2001) Chemical synthesis of lymphotactin: a glycosylated chemokine with a C-terminal mucin-like domain. Chemistry 7(5):1129–1132

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh I, Considine N, Maunus E, Sun L, Zhang A, Buswell J, Evans TC Jr, Xu MQ (2011) Site-specific protein labeling by intein-mediated protein ligation. Methods Mol Biol 705:87–107. https://doi.org/10.1007/978-1-61737-967-3_6

    Article  CAS  PubMed  Google Scholar 

  5. Telenti A, Southworth M, Alcaide F, Daugelat S, Jacobs WR Jr, Perler FB (1997) The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol 179(20):6378–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, Perler FB, Benner J, Kucera RB, Hirvonen CA, Pelletier JJ, Paulus H, Xu M-Q (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192(2):271–281. https://doi.org/10.1016/S0378-1119(97)00105-4

    Article  CAS  PubMed  Google Scholar 

  7. Evans TC Jr, Benner J, Xu MQ (1999) The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem 274(7):3923–3926

    Article  CAS  PubMed  Google Scholar 

  8. Minteer CJ, Siegart NM, Colelli KM, Liu X, Linhardt RJ, Wang C, Gomez AV, Reitter JN, Mills KV (2017) Intein-promoted cyclization of aspartic acid flanking the intein leads to atypical N-terminal cleavage. Biochemistry 56(8):1042–1050. https://doi.org/10.1021/acs.biochem.6b00894

    Article  CAS  PubMed  Google Scholar 

  9. Biolabs NE (2019) Impact vectors and applications. Biolabs NE, Ipswich. https://www.neb.com/tools-and-resources/selection-charts/impact-vectors-and-applications

    Google Scholar 

  10. Gentle IE, De Souza DP, Baca M (2004) Direct production of proteins with N-terminal cysteine for site-specific conjugation. Bioconjug Chem 15(3):658–663. https://doi.org/10.1021/bc049965o

    Article  CAS  PubMed  Google Scholar 

  11. Mathys S, Evans TC, Chute IC, Wu H, Chong S, Benner J, Liu XQ, Xu MQ (1999) Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  12. Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5(1):75–86. https://doi.org/10.1023/B:JSFG.0000029237.70316.52

    Article  CAS  Google Scholar 

  13. Peroutka Iii RJ, Orcutt SJ, Strickler JE, Butt TR (2011) SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes. Methods Mol Biol 705:15–30. https://doi.org/10.1007/978-1-61737-967-3_2

    Article  CAS  PubMed  Google Scholar 

  14. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154. https://doi.org/10.1021/ja00897a025

    Article  CAS  Google Scholar 

  15. Chan WC (2004) Fmoc solid phase peptide synthesis : a practical approach. University Press, Oxford

    Google Scholar 

  16. Palomo JM (2014) Solid-phase peptide synthesis: an overview focused on the preparation of biologically relevant peptides. RSC Adv 4(62):32658–32672. https://doi.org/10.1039/C4RA02458C

    Article  CAS  Google Scholar 

  17. Yang Y (2016) Side reactions in peptide synthesis. Elsevier, Amsterdam

    Book  Google Scholar 

  18. Fields GB (2002) Introduction to peptide synthesis. Curr Protoc Protein Sci 18:Unit-18.11. https://doi.org/10.1002/0471140864.ps1801s26

    Article  Google Scholar 

  19. Amblard M, Fehrentz J-A, Martinez J, Subra G (2005) Fundamentals of modern peptide synthesis. In: Howl J (ed) Peptide synthesis and applications. Humana, Totowa, NJ, pp 3–24. https://doi.org/10.1385/1-59259-877-3:003

    Chapter  Google Scholar 

  20. Muttenthaler M, Albericio F, Dawson PE (2015) Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis. Nat Protoc 10:1067. https://doi.org/10.1038/nprot.2015.061. https://www.nature.com/articles/nprot.2015.061#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  21. Ganesan A (2003) Wang resin. Encyclopedia of reagents for organic synthesis Wiley, Hoboken, NJ. https://doi.org/10.1002/047084289X.rn00168

    Book  Google Scholar 

  22. Wang S-S (1973) p-Alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J Am Chem Soc 95(4):1328–1333. https://doi.org/10.1021/ja00785a602

    Article  CAS  PubMed  Google Scholar 

  23. Camarero JA, Cotton GJ, Adeva A, Muir TW (1998) Chemical ligation of unprotected peptides directly from a solid support. J Pept Res 51(4):303–316

    Article  CAS  PubMed  Google Scholar 

  24. Gates ZP, Dhayalan B, Kent SB (2016) Obviation of hydrogen fluoride in Boc chemistry solid phase peptide synthesis of peptide-(alpha)thioesters. Chem Commun (Camb) 52(97):13979–13982. https://doi.org/10.1039/c6cc07891e

    Article  CAS  Google Scholar 

  25. Raz R, Burlina F, Ismail M, Downward J, Li J, Smerdon SJ, Quibell M, White PD, Offer J (2016) HF-free boc synthesis of peptide thioesters for ligation and cyclization. Angew Chem Int Ed Engl 55(42):13174–13179. https://doi.org/10.1002/anie.201607657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noisier AFM, Albericio F (2015) Advance in ligation techniques for peptide and protein synthesis. Amino Acids, Peptides and Proteins. R Soc Chem 39:1–20. https://doi.org/10.1039/9781849739962-00001

    Article  Google Scholar 

  27. Mahto SK, Howard CJ, Shimko JC, Ottesen JJ (2011) A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-acylurea approach. Chembiochem 12(16):2488–2494. https://doi.org/10.1002/cbic.201100472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew Chem Int Ed Engl 47(36):6851–6855. https://doi.org/10.1002/anie.200705471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shin Y, Winans KA, Backes BJ, Kent SBH, Ellman JA, Bertozzi CR (1999) Fmoc-based synthesis of peptide-αthioesters: application to the total chemical synthesis of a glycoprotein by native chemical ligation. J Am Chem Soc 121(50):11684–11689. https://doi.org/10.1021/ja992881j

    Article  CAS  Google Scholar 

  30. Alsina J, Yokum TS, Albericio F, Barany G (1999) Backbone amide linker (BAL) strategy for N(alpha)()-9-fluorenylmethoxycarbonyl (Fmoc) solid-phase synthesis of unprotected peptide p-nitroanilides and thioesters(1). J Org Chem 64(24):8761–8769

    Article  CAS  PubMed  Google Scholar 

  31. Swinnen D, Hilvert D (2000) Facile, Fmoc-compatible solid-phase synthesis of peptide C-terminal thioesters. Org Lett 2(16):2439–2442. https://doi.org/10.1021/ol0060836

    Article  CAS  PubMed  Google Scholar 

  32. Botti P, Villain M, Manganiello S, Gaertner H (2004) Native chemical ligation through in situ O to S acyl shift. Org Lett 6(26):4861–4864. https://doi.org/10.1021/ol0481028

    Article  CAS  PubMed  Google Scholar 

  33. Camarero JA, Hackel BJ, de Yoreo JJ, Mitchell AR (2004) Fmoc-based synthesis of peptide alpha-thioesters using an aryl hydrazine support. J Org Chem 69(12):4145–4151. https://doi.org/10.1021/jo040140h

    Article  CAS  PubMed  Google Scholar 

  34. Ohta Y, Itoh S, Shigenaga A, Shintaku S, Fujii N, Otaka A (2006) Cysteine-derived S-protected oxazolidinones: potential chemical devices for the preparation of peptide thioesters. Org Lett 8(3):467–470. https://doi.org/10.1021/ol052755m

    Article  CAS  PubMed  Google Scholar 

  35. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22(1):4–27. https://doi.org/10.1002/psc.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Camarero JA, Mitchell AR (2005) Synthesis of proteins by native chemical ligation using Fmoc-based chemistry. Protein Pept Lett 12(8):723–728

    Article  CAS  PubMed  Google Scholar 

  37. Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123(4):526–533

    Article  CAS  PubMed  Google Scholar 

  38. Dawson PE (2011) Native chemical ligation combined with desulfurization and deselenization: a general strategy for chemical protein synthesis. Israel J Chem 51(8–9):862–867. https://doi.org/10.1002/ijch.201100128

    Article  CAS  Google Scholar 

  39. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed Engl 46(48):9248–9252. https://doi.org/10.1002/anie.200704195

    Article  CAS  PubMed  Google Scholar 

  40. Henager S, Chu N, Chen Z, Bolduc D, Dempsey D, Hwang Y, Wells J, Cole P (2016) Expressed protein ligation using subtiligase, Nat Methods. 2016 13(11):925–927 https://doi.org/10.1038/nmeth.4004

  41. Henager SH, Chu N, Chen Z, Bolduc D, Dempsey DR, Hwang Y, Wells J, Cole PA (2016) Enzyme-catalyzed expressed protein ligation. Nat Methods 13(11):925–927. https://doi.org/10.1038/nmeth.4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wong CT, Tung CL, Li X (2013) Synthetic cysteine surrogates used in native chemical ligation. Mol BioSyst 9(5):826–833. https://doi.org/10.1039/c2mb25437a

    Article  CAS  PubMed  Google Scholar 

  43. Yamaguchi H, Miyazaki M (2014) Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomol Ther 4(1):235–251. https://doi.org/10.3390/biom4010235

    Article  CAS  Google Scholar 

  44. Zhi W, Landry SJ, Gierasch LM, Srere PA (1992) Renaturation of citrate synthase: influence of denaturant and folding assistants. Protein Sci 1(4):522–529. https://doi.org/10.1002/pro.5560010407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamaguchi H, Miyazaki M, Briones-Nagata MP, Maeda H (2010) Refolding of difficult-to-fold proteins by a gradual decrease of denaturant using microfluidic chips. J Biochem 147(6):895–903. https://doi.org/10.1093/jb/mvq024

    Article  CAS  PubMed  Google Scholar 

  46. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598

    Article  CAS  PubMed  Google Scholar 

  47. Neises B, Steglich W (1978) Simple method for the esterification of carboxylic acids. Angew Chem Int Ed Engl 17(7):522–524. https://doi.org/10.1002/anie.197805221

    Article  Google Scholar 

  48. Blankemeyer-Menge B, Nimtz M, Frank R (1990) An efficient method for anchoring fmoc-anino acids to hydroxyl-functionalised solid supports. Tetrahedron Lett 31(12):1701–1704. https://doi.org/10.1016/S0040-4039(00)88858-9

    Article  CAS  Google Scholar 

  49. Isidro-Llobet A, Álvarez M, Albericio F (2009) Amino acid-protecting groups. Chem Rev 109(6):2455–2504. https://doi.org/10.1021/cr800323s

    Article  CAS  PubMed  Google Scholar 

  50. Southworth MW, Amaya K, Evans TC, Xu MQ, Perler FB (1999) Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27(1):110–120. https://doi.org/10.2144/99271st04

    Article  CAS  PubMed  Google Scholar 

  51. Blanco-Canosa JB, Nardone B, Albericio F, Dawson PE (2015) Chemical protein synthesis using a second-generation N-acylurea linker for the preparation of peptide-thioester precursors. J Am Chem Soc 137(22):7197–7209. https://doi.org/10.1021/jacs.5b03504

    Article  CAS  PubMed  Google Scholar 

  52. Johnson ECB, Kent SBH (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128(20):6640–6646. https://doi.org/10.1021/ja058344i

    Article  CAS  PubMed  Google Scholar 

  53. Kamei A, Hauser PS, Beckstead JA, Weers PMM, Ryan RO (2012) Expressed protein ligation-mediated template protein extension. Protein Expr Purif 83(2):113–116. https://doi.org/10.1016/j.pep.2012.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Z, Rejtar T, Zhou ZS, Karger BL (2010) Desulfurization of cysteine-containing peptides resulting from sample preparation for protein characterization by mass spectrometry. Rapid Commun Mass Spectrom 24(3):267–275. https://doi.org/10.1002/rcm.4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu P, O’Mara BW, Warrack BM, Wu W, Huang Y, Zhang Y, Zhao R, Lin M, Ackerman MS, Hocknell PK, Chen G, Tao L, Rieble S, Wang J, Wang-Iverson DB, Tymiak AA, Grace MJ, Russell RJ (2010) A tris (2-carboxyethyl) phosphine (TCEP) related cleavage on cysteine-containing proteins. J Am Soc Mass Spectrom 21(5):837–844. https://doi.org/10.1016/j.jasms.2010.01.016

    Article  CAS  PubMed  Google Scholar 

  56. Spriestersbach A, Kubicek J, Schafer F, Block H, Maertens B (2015) Purification of His-tagged proteins. Methods Enzymol 559:1–15. https://doi.org/10.1016/bs.mie.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  57. Traub WH, Leonhard B (1995) Heat stability of the antimicrobial activity of sixty-two antibacterial agents. J Antimicrob Chemother 35(1):149–154

    Article  CAS  PubMed  Google Scholar 

  58. Sarin VK, Kent SB, Tam JP, Merrifield RB (1981) Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem 117(1):147–157

    Article  CAS  PubMed  Google Scholar 

  59. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  60. Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219(1):37–44

    Article  CAS  PubMed  Google Scholar 

  61. Virdee S, Macmillan D, Waksman G (2010) Semisynthetic Src SH2 domains demonstrate altered phosphopeptide specificity induced by incorporation of unnatural lysine derivatives. Chem Biol 17(3):274–284. https://doi.org/10.1016/j.chembiol.2010.01.015

    Article  CAS  PubMed  Google Scholar 

  62. Zuberek J, Wyslouch-Cieszynska A, Niedzwiecka A, Dadlez M, Stepinski J, Augustyniak W, Gingras A-C, Zhang Z, Burley SK, Sonenberg N, Stolarski R, Darzynkiewicz E (2003) Phosphorylation of eIF4E attenuates its interaction with mRNA 5′ cap analogs by electrostatic repulsion: intein-mediated protein ligation strategy to obtain phosphorylated protein. RNA 9(1):52–61. https://doi.org/10.1261/rna.2133403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Pellois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diaz, J., Pellois, JP. (2020). Expressed Protein Ligation: General Experimental Protocols. In: Vila-Perelló, M. (eds) Expressed Protein Ligation. Methods in Molecular Biology, vol 2133. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0434-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0434-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0433-5

  • Online ISBN: 978-1-0716-0434-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics