Skip to main content

Nanobiolistics: An Emerging Genetic Transformation Approach

  • Protocol
  • First Online:
Biolistic DNA Delivery in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2124))

Abstract

Biolistic delivery of biomolecular cargoes to plants with micron-scale projectiles is a well-established technique in plant biotechnology. However, the relatively large micron-scale biolistic projectiles can result in tissue damage, low regeneration efficiency, and create difficulties for the biolistic transformation of isomorphic small cells or subcellular target organelles (i.e., mitochondria and plastids). As an alternative to micron-sized carriers, nanomaterials provide a promisingĀ approach for biomolecule delivery to plants. While most studies exploring nanoscale biolistic carriers have been carried out in animal cells and tissues, which lack a cell wall, we can nonetheless extrapolate their utility for nanobiolistic delivery of biomolecules in plant targets. Specifically, nanobiolistics has shown promising results for use in animal systems, in which nanoscale projectiles yield lower levels of cell and tissue damage while maintaining similar transformation efficiencies as their micron-scale counterparts. In this chapter, we specifically discuss biolistic delivery of nanoparticles for plant genetic transformation purposes and identify the figures of merit requiring optimization for broad-scale implementation of nanobiolistics in plant genetic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Subcommittee N (2007) The national nanotechnology initiative. Nanotechnology. https://doi.org/10.4135/9781412972093.n338

  2. Johlin E, Al-Obeidi A, Nogay G, Stuckelberger M, Buonassisi T, Grossman JC (2016) Nanohole structuring for improved performance of hydrogenated Amorphous silicon photovoltaics. ACS Appl Mater Interfaces 8:15169ā€“15176

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Lee YM, Lee D, Kim J, Park H, Kim WJ (2015) RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer. J Control Release 205:172ā€“180

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. LaVan DA, McGuire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184ā€“1191

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Cavalcanti A, Shirinzadeh B, Freitas RA Jr, Hogg T (2007) Nanorobot architecture for medical target identification. Nanotechnology 19:15103

    ArticleĀ  Google ScholarĀ 

  6. Zadegan RM, Norton ML (2012) Structural DNA nanotechnology: from design to applications. Int J Mol Sci 13:7149ā€“7162

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792ā€“803

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Thangavelu RM, Gunasekaran D, Jesse MI, Riyaz MSU, Sundarajan D, Krishnan K (2018) Nanobiotechnology approach using plant rooting hormone synthesized silver nanoparticle as ā€œnanobulletsā€ for the dynamic applications in horticulture ā€“ an in vitro and ex vitro study. Arab J Chem 11:48ā€“61

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Barrena R, Casals E, ColĆ³n J, Font X, SĆ”nchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850ā€“857

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303ā€“310

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190ā€“197

    Google ScholarĀ 

  12. Tian H, Chen J, Chen X (2013) Nanoparticles for gene delivery. Small 9:2034ā€“2044

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Demirer GS, Okur AC, Kizilel S (2015) Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J Mater Chem B 3:7831ā€“7849

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 11:1449ā€“1470

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Nazli C, Demirer GS, Yar Y, Acar HY, Kizilel S (2014) Targeted delivery of doxorubicin into tumor cells via MMP-sensitive PEG hydrogel-coated magnetic iron oxide nanoparticles (MIONPs). Colloids Surfaces B Biointerfaces 122:674ā€“683

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Mu Q, Jeon M, Hsiao M-H, Patton VK, Wang K, Press OW, Zhang M (2015) Stable and efficient paclitaxel nanoparticles for targeted glioblastoma therapy. Adv Healthc Mater 4:1236ā€“1245

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Jin S, Leach JC, Ye K (2009) Nanoparticle-mediated gene delivery. In: Foote RS, Lee JW (eds) Micro and nano technologies in bioanalysis: methods and protocols. Humana, Totowa, NJ, pp 547ā€“557

    ChapterĀ  Google ScholarĀ 

  18. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65ā€“71

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Gu Y-J, Cheng J, Lin C-C, Lam YW, Cheng SH, Wong W-T (2009) Nuclear penetration of surface functionalized gold nanoparticles. Toxicol Appl Pharmacol 237:196ā€“204

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129:11653ā€“11661

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Shiotani A, Mori T, Niidome T, Niidome Y, Katayama Y (2007) Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23:4012ā€“4018

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Han G, Martin CT, Rotello VM (2006) Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Chem Biol Drug Des 67:78ā€“82

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Han G, Chari NS, Verma A, Hong R, Martin CT, Rotello VM (2005) Controlled recovery of the transcription of nanoparticle-bound DNA by intracellular concentrations of glutathione. Bioconjug Chem 16:1356ā€“1359

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Pezzoli D, Kajaste-Rudnitski A, Chiesa R, Candiani G (2013) Lipid-based nanoparticles as nonviral gene delivery vectors. In: Bergese P, Hamad-Schifferli K (eds) Nanomaterial interfaces in biology: methods and protocols. Humana, Totowa, NJ, pp 269ā€“279

    ChapterĀ  Google ScholarĀ 

  25. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941ā€“951

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Hui SW, Langner M, Zhao Y-L, Ross P, Hurley E, Chan K (1996) The role of helper lipids in cationic liposome-mediated gene transfer. Biophys J 71:590ā€“599

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Chatin B, MĆ©vel M, DevalliĆØre J, Dallet L, Haudebourg T, Peuziat P, Colombani T, Berchel M, Lambert O, Edelman A, Pitard B (2015) Liposome-based formulation for intracellular delivery of functional proteins. Mol Ther Nucleic Acids 4:e244

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, Han Y, Gao X, Pouli D, Wu Q, Georgakoudi I, Liu DR, Xu Q (2016) Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A 113:2868ā€“2873

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813ā€“827

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Nitta KS, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629ā€“1654

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Li J, Liang H, Liu J, Wang Z (2018) Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy. Int J Pharm 546:215ā€“225

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Pasupathy K, Lin S, Hu Q, Luo H, Ke PC (2008) Direct plant gene delivery with a poly(amidoamine) dendrimer. Biotechnol J 3:1078ā€“1082

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Hartono SB, Phuoc NT, Yu M, Jia Z, Monteiro MJ, Qiao S, Yu C (2014) Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery. J Mater Chem B 2:718ā€“726

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295ā€“300

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Karimi M, Solati N, Ghasemi A, Estiar MA, Hashemkhani M, Kiani P, Mohamed E, Saeidi A, Taheri M, Avci P, Aref AR, Amiri M, Baniasadi F, Hamblin MR (2015) Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv 12:1089ā€“1105

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Demirer GS, Landry MP (2017) Delivering genes to plants. Chem Eng Prog 113:40ā€“45

    CASĀ  Google ScholarĀ 

  37. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307ā€“316

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Heister E, Neves V, TĆ®lmaciu C, Lipert K, BeltrĆ”n VS, Coley HM, Silva SRP, McFadden J (2009) Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47:2152ā€“2160

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652ā€“6660

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Shi Kam NW, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotubeāˆ’ protein conjugates into mammalian cells. J Am Chem Soc 126:6850ā€“6851

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Kam NWS, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem 118:591ā€“595

    ArticleĀ  Google ScholarĀ 

  42. Dong H, Ding L, Yan F, Ji H, Ju H (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32:3875ā€“3882

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Qin W, Yang K, Tang H, Tan L, Xie Q, Ma M, Zhang Y, Yao S (2011) Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surfaces B Biointerfaces 84:206ā€“213

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Karmakar A, Bratton SM, Dervishi E, Ghosh A, Mahmood M, Xu Y, Saeed LM, Mustafa T, Casciano D, Radominska-Pandya A, Biris AS (2011) Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int J Nanomedicine 6:1045ā€“1055

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Wu Y, Phillips JA, Liu H, Yang R, Tan W (2008) Carbon nanotubes protect DNA strands during cellular delivery. ACS Nano 2:2023ā€“2028

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  46. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338ā€“342

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Wang H, Koleilat GI, Liu P, JimĆ©nez-OsĆ©s G, Lai YC, Vosgueritchian M, Fang Y, Park S, Houk KN, Bao Z (2014) High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors. ACS Nano 8:2609ā€“2617

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP, Swan JW, Blankschtein D, Strano MS (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16:1161ā€“1172

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400ā€“408

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Demirer GS, Zhang H, Matos J, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho MJ, Staskawicz B, Landry MP (2018) High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol 14:456ā€“464

    ArticleĀ  CASĀ  Google ScholarĀ 

  51. Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36:882ā€“897

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Wang P, Lombi E, Zhao F-JJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699ā€“712

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Sidorov VA, Kasten D, Pang S, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209ā€“216

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Kwak S-Y, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua NH, Strano MS (2016) Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol 14:447ā€“455

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Kreyling WG, Semmler-Behnke M, Chaudhry Q (2010) A complementary definition of nanomaterial. Nano Today 5:165ā€“168

    ArticleĀ  Google ScholarĀ 

  56. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154ā€“163

    ArticleĀ  CASĀ  Google ScholarĀ 

  57. Parisi C, Vigani M, RodrĆ­guez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124ā€“127

    ArticleĀ  CASĀ  Google ScholarĀ 

  58. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224ā€“9239

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. PĆ©rez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12

    ArticleĀ  Google ScholarĀ 

  60. Zhang F, Wang R, Xiao Q, Wang Y, Zhang J (2006) Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on biology. II Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on plants. Nanoscience 11:18ā€“26

    CASĀ  Google ScholarĀ 

  61. CaƱas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922ā€“1931

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  62. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473ā€“9479

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713ā€“717

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. GrĆ¼n M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9:254ā€“257

    ArticleĀ  Google ScholarĀ 

  65. Wu S-H, Mou C-Y, Lin H-P (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42:3862ā€“3875

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Slowing I, Trewyn BG, Lin VS (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128:14792ā€“14793

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Lim MH, Blanford CF, Stein A (1998) Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts. Chem Mater 102:467ā€“470

    ArticleĀ  Google ScholarĀ 

  68. Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451ā€“4459

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20ā€“22

    ArticleĀ  CASĀ  Google ScholarĀ 

  70. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquidā€“liquid system. J Chem Soc Chem Commun 7:801ā€“802

    ArticleĀ  Google ScholarĀ 

  71. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638ā€“665

    ArticleĀ  CASĀ  Google ScholarĀ 

  72. PĆ©rez-Juste J, Pastoriza-Santos I, Liz-MarzĆ”n LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870ā€“1901

    ArticleĀ  CASĀ  Google ScholarĀ 

  73. Bhattacharjee S (2016) DLS and zeta potential ā€“ what they are and what they are not? J Control Release 235:337ā€“351

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70ā€“73

    ArticleĀ  CASĀ  Google ScholarĀ 

  75. Roizenblatt R, Weiland JD, Carcieri S, Qiu G, Behrend M, Humayun MS, Chow RH (2006) Nanobiolistic delivery of indicators to the living mouse retina. J Neurosci Methods 153:154ā€“161

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  76. Arsenault J, Oā€™Brien JA (2013) Optimized heterologous transfection of viable adult organotypic brain slices using an enhanced gene gun. BMC Res Notes 6:544

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  77. Oā€™Brien JA, Lummis SC (2011) Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol 11:66

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  78. Lee P-W, Peng S-F, Su C-J, Mi FL, Chen HL, Wei MC, Lin HJ, Sung HW (2008) The use of biodegradable polymeric nanoparticles in combination with a low-pressure gene gun for transdermal DNA delivery. Biomaterials 29:742ā€“751

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Lee P-W, Hsu S-H, Tsai J-S, Chen FR, Huang PJ, Ke CJ, Liao ZX, Hsiao CW, Lin HJ, Sung HW (2010) Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials 31:2425ā€“2434

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Huang HN, Li TL, Chan YL, Chen CL, Wu CJ (2009) Transdermal immunization with low-pressure-gene-gun mediated chitosan-based DNA vaccines against Japanese encephalitis virus. Biomaterials 30:6017ā€“6025

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  81. Raji JA, Frame B, Little D, Santoso TJ, Wang K (2018) Agrobacterium- and biolistic-mediated transformation of maize b104 inbred. In: Lagrimini LM (ed) Maize: methods and protocols. Springer, New York, NY, pp 15ā€“40

    ChapterĀ  Google ScholarĀ 

  82. Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  83. Ismagul A, Yang N, Maltseva E, Iskakova G, Mazonka I, Skiba Y, Bi H, Eliby S, Jatayev S, Shavrukov Y, Borisjuk N, Langridge P (2018) A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biol 18:135

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  84. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947ā€“951

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Kumari M, Rai AK, Devanna BN, Singh PK, Kapoor R, Rajashekara H, Prakash G, Sharma V, Sharma TR (2017) Co-transformation mediated stacking of blast resistance genes Pi54 and Pi54rh in rice provides broad spectrum resistance against Magnaporthe oryzae. Plant Cell Rep 36:1747ā€“1755

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  86. Srivastava V, Underwood JL, Zhao S (2017) Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome. Plant Cell Tissue Organ Cult 129:153ā€“160

    ArticleĀ  CASĀ  Google ScholarĀ 

  87. Chaithra N, Gowda RPH, Guleria N (2015) Transformation of tomato with Cry2ax1 by biolistic gun method for fruit borer resistance. Int J Agric Environ Biotechnol 8:795ā€“803

    ArticleĀ  Google ScholarĀ 

  88. Kumar N, Galli M, Ordon J, Stuttmann J, Kogel KH, Imani J (2018) Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnol J 16:1892ā€“1903

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  89. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  90. Rafsanjani MS, Alvari A, Samim M, Hejazi MA, Abdin MZ (2012) Application of novel nanotechnology strategies in plant biotransformation: a contemporary overview. Recent Pat Biotechnol 6:69ā€“79

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  91. Zalewski W, Orczyk W, Gasparis S, Nadolska-Orczyk A (2012) HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes. BMC Plant Biol 12:206

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  92. Alok A, Sharma S, Kumar J, Verma S, Sood H (2017) Engineering in plant genome using Agrobacterium: progress and future. In: Kalia VC, Saini AK (eds) Metabolic engineering for bioactive compounds: Strategies and processes. Springer, Singapore, pp 91ā€“111

    ChapterĀ  Google ScholarĀ 

  93. Anand A, Trick HN, Gill BS, Muthukrishnan S (2003) Stable transgene expression and random gene silencing in wheat. Plant Biotechnol J 1:241ā€“251

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  94. Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci U S A 95:7203ā€“7208

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  95. Tassy C, Partier A, Beckert M, Feuillet C, Barret P (2014) Biolistic transformation of wheat: increased production of plants with simple insertions and heritable transgene expression. Plant Cell Tissue Organ Cult 119:171ā€“181

    ArticleĀ  CASĀ  Google ScholarĀ 

  96. Martin-Ortigosa S, Valenstein JS, Lin VS-Y, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576ā€“3582

    ArticleĀ  CASĀ  Google ScholarĀ 

  97. Martin-Ortigosa S, Valenstein JS, Sun W, Moeller L, Fang N, Trewyn BG, Lin VS, Wang K (2012) Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 8:413ā€“422

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537ā€“547

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  99. Mortazavi SE, Zohrabi Z (2018) Biolistic co-transformation of rice using gold nanoparticles. Iran Agric Res 37:75ā€“82

    Google ScholarĀ 

  100. Okuzaki A, Kida S, Watanabe J, Hirasawa I, Tabei Y (2013) Efficient plastid transformation in tobacco using small gold particles (0.07ā€“0.3 Ī¼m). Plant Biotechnol 30:65ā€“72

    ArticleĀ  CASĀ  Google ScholarĀ 

  101. Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP (2019). Carbon Nanocarriers Deliver siRNA to Intact Plant Cells for Efficient Gene Knockdown. bioRxiv, 564427

    Google ScholarĀ 

  102. Zhang H, Demirer GS, Zhang H, Ye T, Goh NS, Aditham AJ, Cunningham FJ, Fan C, Landry MP (2019) DNA nanostructures coordinate gene silencing in mature plants. Proc Natl Acad Sci 116(15):7543ā€“7548

    Google ScholarĀ 

Download references

Acknowledgments

The authors acknowledge support from a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), a Beckman Foundation Young Investigator Award, a USDA AFRI award, a grant from the Gordon and Betty Moore Foundation, a USDA NIFA award,Ā an NIH MIRA award, support from the Chan-Zuckerberg foundation, and an FFAR New Innovator Award (to M.P.L). F.J.C is supported by an NSF Graduate Research Fellowship, N.S.G is supported by a FFAR Fellowship,Ā and G.S.D. is supported by a Schlumberger Foundation Faculty for the Future Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markita P. Landry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cunningham, F.J., Demirer, G.S., Goh, N.S., Zhang, H., Landry, M.P. (2020). Nanobiolistics: An Emerging Genetic Transformation Approach. In: Rustgi, S., Luo, H. (eds) Biolistic DNA Delivery in Plants. Methods in Molecular Biology, vol 2124. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0356-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0356-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0355-0

  • Online ISBN: 978-1-0716-0356-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics