Skip to main content

Production of Virus-Resistant Plants Through Transgenic Approaches

  • Protocol
  • First Online:
Characterization of Plant Viruses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Production of transgenic plants for virus resistance is one of the success stories of genetic engineering that produce long-lasting and protected virus resistance, enabling the production of crops at commercial level. Of the various transgenes, use of translatable or non-translatable regions of the virus genome is the most successful approaches for developing virus-resistant varieties (known as pathogen-derived resistance, PDR). Of the various virus sequences, coat protein gene is the most widely used to engineer transgenic resistance. Availability of reliable regeneration systems, gene constructs in appropriate vectors, plant transformation techniques, selection of transgenic plants, characterization and evaluation of transgenic plants for resistance and commercialization of the transgenic variety are the various steps in the production and commercialization of transgenic virus-resistant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74:5350–5354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK (2005) Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium mediated transformation and regeneration. Plant Cell Rep 24:523–531

    Article  CAS  PubMed  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12(26):8711–8721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block MD, Herrera EL, Vanmontagu M (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J 3:1681–1689

    Article  PubMed  PubMed Central  Google Scholar 

  • Bull SE, Owiti JA, Niklaus M, Beeching JR, Gruissem W, Vanderschuren H (2009) Agrobacterium mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat Protoc 4:1845–1854

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Gonalves C, Tennant P, Fermin G, Souza M, Sarinud N, Jan FJ, Zhu HY, Gonsalves D (1999) A protocol for efficient transformation and regeneration of Carica papaya L. InVitro Cell Dev Biol-Plant 35:61–69

    Article  CAS  Google Scholar 

  • Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56:601–611

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta I, Malathi VG, Mukherjee SK (2003) Genetic engineering for virus resistance. Curr Sci 84:341–354

    CAS  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77:7347–7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper J, Scott R, Armitage P (1988) Plant genetic transformation and gene expression: a laboratory manual. Blackwell Scientific Publishers, Oxford

    Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JS (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189–194

    CAS  PubMed  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford C (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya. Biotechnology 10:1466–1472

    CAS  Google Scholar 

  • Framond AJ, Barton KA, Chilton MD (1983) Mini Ti: a new vector strategy for plant genetic engineering. Bio/Technology 1:262–269

    Google Scholar 

  • Fuchs M, Gonsalves D (1995) Resistance of transgenic squash Pavo ZW-20 expressing the coat protein genes of Zucchini yellow mosaic virus and Watermelon mosaic virus 2 to mixed infections by both potyviruses. BioTechnology 13:1466–1473

    CAS  Google Scholar 

  • Fuchs M, Tricoli DM, McMaster JM, Carney KJ, Schesser M (1998) Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis 82:1350–1356

    Article  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium mediated plant transformation: the biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick E, Zrachya A, Levy Y, Mett A, Gidoni D et al (2008) Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci U S A 105:157–161

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez AE, Schöpke C, Taylor NJ, Beachy RN, Fauquet CM (1998) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium mediated transformation of embryogenic suspension cultures. Plant Cell Rep 17:827–831

    Article  CAS  PubMed  Google Scholar 

  • Hellens RP, Mullineaux P, Klee H (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium mediated plant transformation. Plant Mol Biol 42:819–832

    Article  CAS  PubMed  Google Scholar 

  • Himber C, Dunoyer P, Moissiard Izenthaler C, Voinnet O (2003) Transitivity dependent and independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Tiplasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Hu Q, Niu Y, Zhang K, Liu Y, Zhou X (2011) Virus-derived transgenes expressing hairpin RNA give immunity to Tobacco mosaic virus and Cucumber mosaic virus. Virol J 8:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan FJ, Fagoaga C, Pang SZ, Gonsalves D (2000) A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology dependent gene silencing. J Gen Virol 81:2103–2109

    Article  CAS  PubMed  Google Scholar 

  • Jardak-Jamoussi R, Winterhagen P, Bouamama B, Dubois C, MLiki A, Wetzel T, Ghorbel A, Reustle GM (2009) Development and evaluation of a GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell Tiss Org Cult 97:187–196

    Article  CAS  Google Scholar 

  • Jefferson RA, Wilson KJ (1991) The GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiby MV, Bhat AI (2011) An efficient Agrobacterium-mediated transformation protocol for black Pepper (Piper nigrum L.) using embryogenic mass as explants. J Crop Sci Biotech 14:247–254

    Article  Google Scholar 

  • Jones HD, Diherty A, Wu H (2005) Review of methodology and a protocol for the Agrobacterium mediated transformation of wheat. Plant Methods 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapaun JA, Cheng ZM (1994) Aminoglycoside antibiotics inhibit shoot regeneration from Siberian elm leaf explants. Hortsciences 34:727–729

    Article  Google Scholar 

  • Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Conkling MA, Thompson WF, Robertson D (1998) Gene silencing from plant DNA carried by a geminivirus. Plant J 14:91–100

    Article  CAS  PubMed  Google Scholar 

  • Komari T, Imayama T, Kato N, Ishida Y, Ueki J, Komari T (2007) Current status of binary vectors and super binary vectors. Plant Physiol 145:1155–1160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotechnol Adv 28:35–48

    Article  CAS  PubMed  Google Scholar 

  • Kung Y, Yu T, Huang C, Wang H, Wang S, Yeh S (2010) Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res 19:621–635

    Article  CAS  PubMed  Google Scholar 

  • Li ZN, Fang F, Liu GF, Bao MZ (2007) Stable Agrobacterium-mediated genetic transformation of London plane tree (Platanus acerifolia Willd.). Plant Cell Rep 26:641–650

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) v5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lozsa R, Csorba T, Lakatos L, Burgyan J (2008) Inhibition of 3 modification of small RNAs in virus infected plants require spatial and temporal coexpression of small RNAs and viral silencing-suppressor proteins. Nucleic Acids Res 36:4099–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manamohan M, Sharath Chandra G, Asokan R, Deepa H, Prakash MN, Krishna Kumar NK (2013) One-step DNA fragment assembly for expressing intron-containing hairpin RNA in plants for gene silencing. Anal Biochem 433:189–191

    Article  CAS  PubMed  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GO, Xu ZP (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207

    Article  CAS  PubMed  Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS, Chand PK (2001) Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium mediated transformation of somatic embryos. Plant Cell Rep 20:712–720

    Article  CAS  Google Scholar 

  • Nair RR, Gupta SD (2006) High frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.). Plant Cell Rep 24:699–707

    Article  CAS  PubMed  Google Scholar 

  • Naito Y, Yamada T, Matsumiya T, Ui-Tei K, Saigo K et al (2005) dsCheck: highly sensitive off–target search software for dsRNA–mediated RNA interference. Nucleic Acids Res 33:589–591

    Article  CAS  Google Scholar 

  • Ntui VO, Kynet K, Khan RS, Ohara M, Goto Y, Watanabe M, Fukami M, Nakamura I, Mil M (2014) Transgenic tobacco lines expressing defective CMV replicase-derived dsRNA are resistant to CMV-O and CMV-Y. Mol Biotechnol 56:50–63

    Article  CAS  PubMed  Google Scholar 

  • O’Donell IJ, Shukla DD, Gough KH (1982) Electroblot immunoassay of virus infected plant sap—a powerful technique for detecting plant viruses. J Virol Methods 4:19–26

    Article  Google Scholar 

  • Oz MT, Eyidogan F, Yucel M, Oktem HA (2009) Optimized selection and regeneration conditions for Agrobacterium mediated transformation of chickpea cotyledonary nodes. Pak J Bot 41(4):2043–2054

    Google Scholar 

  • Pooggin MM (2017) RNAi-mediated resistance to viruses: a critical assessment of methodologies. Curr Opin Virol 26:28–35

    Article  CAS  PubMed  Google Scholar 

  • Powel-Abel P, Nelson RS, De B, Hoffman N, Rogers SG, Frayley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco virus coat protein gene. Science 232:738–743

    Article  Google Scholar 

  • Praveen S, Kushwaha CM, Mishra AK, Singh V, Jain RK, Varma A (2005) Engineering tomato for resistance to tomato leaf curl disease using viral rep gene sequences. Plant Cell Tiss Org Cult 83:311–318

    Article  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quemada H, L’Hostis B, Gonsalves D et al (1990) The nucleotide sequences of the 3′-terminal regions of papaya ringspot virus strains W and P. J Gen Virol 71:203–210

    Article  CAS  PubMed  Google Scholar 

  • Retheesh ST, Bhat AI (2011) Genetic transformation and regeneration of transgenic plants from protocorm-like bodies of vanilla (Vanilla planifolia Andrews.) using Agrobacterium tumefaciens. J Plant Biochem Biotechnol 20:262–269

    Article  CAS  Google Scholar 

  • Revathy KA, Bhat AI (2019) Designing of siRNAs for various target genes of Cucumber mosaic virus subgroup IB. Indian J Biotechnol 18:119–125

    Google Scholar 

  • Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 9:1509–1519

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, vol I–III, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Scorza R, Hily JM, Callahan A, Malinwski T, Cambra M, Capote M, Zagrai I, Damsteegt V, Briard P, Ravelonandro M (2007) Deregulation of plum pox resistant transgenic plum ‘HoneySweet’. Acta Hort 738:669–673

    Article  Google Scholar 

  • Shekhawat UKS, Ganapathi TR, Srinivas L, Bapat VA, Rathore TS (2008) Agrobacterium mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. Plant Cell Tiss Org Cult 92:261–271

    Article  CAS  Google Scholar 

  • Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Article  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intorn-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  • Smyth DR (1999) Gene silencing: plants and viruses fight it out. Curr Biol 9:100–102

    Article  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Suzuki J, Gonsalves D (2007) Development of genetically engineered resistant papaya for Papaya ringspot virus in a timely manner: a comprehensive and successful approach. Methods Mol Biol 354:197–240

    CAS  PubMed  Google Scholar 

  • Vanderschuren H, Stupak M, Futterer J, Gruissem W, Zhang P (2007) Engineering resistance to geminiviruses-review and perspectives. Plant Biotechnol J 5:207–220

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Jain RK, Bhat AI (2002) Virus resistant transgenic plants for environmentally safe management of viral diseases. Indian J Biotechnol 1:73–86

    CAS  Google Scholar 

  • Vassilakos N, Bem F, Tzima A, Barker H, Reavy B, Karanastasi E, Robinson DJ (2008) Resistance of transgenic tobacco plants incorporating the putative 57-kDa polymerase readthrough gene of Tobacco rattle virus against rub-inoculated and nematode-transmitted virus. Transgenic Res 17:929–941

    Article  CAS  PubMed  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  CAS  PubMed  Google Scholar 

  • Wen-Jun S, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acid Res 17:8385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhat, A.I., Rao, G.P. (2020). Production of Virus-Resistant Plants Through Transgenic Approaches. In: Characterization of Plant Viruses . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0334-5_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0334-5_49

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0333-8

  • Online ISBN: 978-1-0716-0334-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics