Skip to main content

In Silico Prediction of Tumor Neoantigens with TIminer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2120))

Abstract

Tumor neoantigens are at the core of immunological tumor control and response to immunotherapy. In silico prediction of tumor neoantigens from next-generation sequencing (NGS) data is possible but requires the assembly of complex, multistep computational pipelines and extensive data preprocessing. Using public data from two cancer cell lines, here we show how TIminer, a framework to perform immunogenomics analyses, can be easily used to assemble and run customized pipelines to predict cancer neoantigens from multisample NGS data.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  2. Galluzzi L, Chan TA, Kroemer G et al (2018) The hallmarks of successful anticancer immunotherapy. Sci Transl Med 10(459):eaat7807. https://doi.org/10.1126/scitranslmed.aat7807

    Article  CAS  PubMed  Google Scholar 

  3. Fridman WH, Pages F, Sautes-Fridman C et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  4. Havel JJ, Chowell D, Chan TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19(3):133–150. https://doi.org/10.1038/s41568-019-0116-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee CH, Yelensky R, Jooss K et al (2018) Update on tumor neoantigens and their utility: why it is good to be different. Trends Immunol 39(7):536–548. https://doi.org/10.1016/j.it.2018.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schumacher TN, Scheper W, Kvistborg P (2018) Cancer neoantigens. Annu Rev Immunol. https://doi.org/10.1146/annurev-immunol-042617-053402

    Article  CAS  PubMed  Google Scholar 

  7. Gfeller D, Bassani-Sternberg M (2018) Predicting antigen presentation-what could we learn from a million peptides? Front Immunol 9:1716. https://doi.org/10.3389/fimmu.2018.01716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tappeiner E, Finotello F, Charoentong P et al (2017) TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics 33(19):3140–3141. https://doi.org/10.1093/bioinformatics/btx377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hackl H, Charoentong P, Finotello F et al (2016) Computational genomics tools for dissecting tumour-immune cell interactions. Nat Rev Genet 17(8):441–458. https://doi.org/10.1038/nrg.2016.67

    Article  CAS  PubMed  Google Scholar 

  10. McLaren W, Gil L, Hunt SE et al (2016) The ensembl variant effect predictor. Genome Biol 17(1):122. https://doi.org/10.1186/s13059-016-0974-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Szolek A, Schubert B, Mohr C et al (2014) OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30(23):3310–3316. https://doi.org/10.1093/bioinformatics/btu548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nielsen M, Lundegaard C, Blicher T et al (2007) NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2(8):e796. https://doi.org/10.1371/journal.pone.0000796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoof I, Peters B, Sidney J et al (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61(1):1–13. https://doi.org/10.1007/s00251-008-0341-z

    Article  CAS  PubMed  Google Scholar 

  14. Nielsen M, Andreatta M (2016) NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8(1):33. https://doi.org/10.1186/s13073-016-0288-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bray NL, Pimentel H, Melsted P et al (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34(5):525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  16. Charoentong P, Finotello F, Angelova M et al (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18(1):248–262. https://doi.org/10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  17. van der Meer D, Barthorpe S, Yang W et al (2019) Cell model passports-a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res 47(D1):D923–D929. https://doi.org/10.1093/nar/gky872

    Article  CAS  PubMed  Google Scholar 

  18. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boegel S, Lower M, Bukur T et al (2014) A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. Oncoimmunology 3(8):e954893. https://doi.org/10.4161/21624011.2014.954893

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Mi Y, Mueller T et al (2019) Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat Biotechnol 37(3):314–322. https://doi.org/10.1038/s41587-019-0037-y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Finotello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kirchmair, A., Finotello, F. (2020). In Silico Prediction of Tumor Neoantigens with TIminer. In: Boegel, S. (eds) Bioinformatics for Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0327-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0327-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0326-0

  • Online ISBN: 978-1-0716-0327-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics