Skip to main content

Combination of Dark-Field and Confocal Microscopy for the Optical Detection of Silver and Titanium Nanoparticles in Mammalian Cells

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2118))

Abstract

We describe here two optical microscopy techniques—dark-field confocal light scanning microscopy (DF-CLSM) and dark-field wide-field confocal microscopy (DF-WFCM), that can be used to study interaction between nanoparticles and cells in 3D space. Dark field microscopy can detect very small structures below the diffraction limit of conventional light microscopes, while a confocal setup provides vertical sectioning capabilities to render specimens in 3D. The use of DF-WFCM instead of DF-CLSM allows faster sample processing but yields lower resolution. We used a retinal pigment epithelial cell line ARPE-19 to illustrate different optical and lighting conditions necessary for optimal imaging of metal and metal oxide nanoparticles (TiO2 and Ag). Our experimental setup primarily involved an E-800 Nikon and Nikon Ni upright microscopes and a Nikon Ti2 microscope connected to a xenon light source along with special dark-field objectives. For confocal studies we used either Leica and Nikon inverted confocal microscopes. For microscopic analyses, ARPE-19 cells were fixed in situ in cultured chamber slides or collected from T-25 flasks and then fixed in suspension. At the lowest concentrations of TiO2 or Ag tested (0.1–0.3 μg/mL), we were able to detect as few as 5–10 nanoparticles per cell due to intense light scattering by the particles. The degree of brightness detected indicated that the uptake of nanoparticles within ARPE-19 cells could be monitored using dark-field microscopy. Here we describe how to use wide-field microscopy to follow nanoparticle uptake by cells and how to assess some aspects of cellular health in in vitro cell cultures exposed to nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auffan M, Rose J, Bottero JY et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  Google Scholar 

  2. Nohynek GJ, Lademann J, Ribaud C (2007) Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–277

    Article  CAS  Google Scholar 

  3. Salzman GC (2001) Light scatter: detection and usage. Curr Protoc Cytom 9:1.13.1–1.13.8

    Google Scholar 

  4. Shapiro HM (2003) Practical flow cytometry, 4th edn. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  5. Shapiro HM (2001) Optical measurements in cytometry: light scattering, extinction, absorption, and fluorescence. Methods Cell Biol 63:107–129

    Article  CAS  Google Scholar 

  6. Zucker RM, Massaro EJ, Sanders KM et al (2010) Detection of TiO2 nanoparticles in cells by flow cytometry. Cytometry 77:677–685

    Article  CAS  Google Scholar 

  7. Zucker RM, Daniel KM, Massaro E et al (2013) Detection of silver nanoparticles in cells by flow Cytometry using light scatter and far-red fluorescence. Cytometry A 83:962–972

    CAS  PubMed  Google Scholar 

  8. Zucker RM, Ortenzio JNR, Boyes WK (2016) Characterization, detection, and counting of metal nanoparticles using flow cytometry. Cytometry A 89:169–183

    Article  CAS  Google Scholar 

  9. Gibbs-Flournoy EA, Bromberg PA et al (2011) Dark field-confocal microscopy detection of Nanoscale particle internalization by human lung cells. Part Fibre Toxicol 8:2

    Article  CAS  Google Scholar 

  10. Zucker RM, Daniel KM (2012) Microscopy imaging methods for the detection of silver and titanium nanoparticles within cells. In: Soloviev M (ed) Methods in molecular biology. Nanoparticles in biology and medicine, vol 906. Springer, Humana Press, Berlin/Heidelberg, pp 483–496

    Chapter  Google Scholar 

  11. Weinkauf H, Brehm-Stecher BF (2009) Enhanced dark field microscopy for rapid artifact-free detection of nanoparticle binding to Candida albicans cells and hyphae. Biotechnol J 4:871–879

    Article  CAS  Google Scholar 

  12. Murphy DB (2001) NetLibrary I: dark-field microscopy. In: Fundamentals of light microscopy and electronic imaging [electronic resource]. Wiley-Liss, New York, pp 112–116

    Google Scholar 

  13. Spencer M (1982) Fundamentals of light microscopy. Cambridge University Press, Cambridge

    Google Scholar 

  14. Wayne R (2009) Light and video microscopy. Academic Press/Elsevier, Amsterdam; Boston

    Google Scholar 

  15. Zucker RM (2006) Evaluation of confocal microscopy system performance. In: Taatjes DJ, Mossman BT (eds) Methods in molecular biology. Cell imaging techniques, vol 319. Springer, New York, pp 77–135

    Chapter  Google Scholar 

  16. Zucker RM (2006) Quality assessment of confocal microscopy slide based systems: performance. Cytometry A 69:659–676

    Article  Google Scholar 

  17. Zucker RM (2013) Evaluating confocal microscopy system performance. In: Paddock SW (ed) Confocal microscopy methods and protocols, 2nd edn. Humana Press, New York, pp 321–374

    Google Scholar 

Download references

Acknowledgments

The manuscript was edited by Enrico Ferrari and Mikhail Soloviev. Appreciation is given to Carl Blackman Eugene Gibbs, James Samet, Laura Degn, Sarah Hutchinson, and Kristen Sanders for their helpful discussions on the research included in the protocol.

Government Disclaimer: The research described in this chapter has been supported by the US Environmental Protection agency. It has been subjected to agency review and does not necessarily reflect the views of the agency, and no official endorsement should be inferred. The mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Martin Zucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zucker, R.M., Boyes, W.K. (2020). Combination of Dark-Field and Confocal Microscopy for the Optical Detection of Silver and Titanium Nanoparticles in Mammalian Cells. In: Ferrari, E., Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 2118. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0319-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0319-2_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0318-5

  • Online ISBN: 978-1-0716-0319-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics