Skip to main content

Fluorescent Oligonucleotide Probes for the Quantification of RNA by Real-Time qPCR

  • Protocol
  • First Online:
RNA Spectroscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2113))

Abstract

Quantitative real-time PCR (qPCR) is a widely adopted technique used for scientific, clinical, diagnostic, or quality control purposes. One of the main applications of qPCR is gene expression analysis, although mutation detection, genotyping, DNA detection, and quantification (from pathogens or genetically modified organisms) are also investigated using this technique.

Although nonspecific detection based on DNA-binding dyes (including SYBR Green I) offers versatility in qPCR assays, detection of the PCR product using fluorescent probes confers higher specificity and sensitivity to assays, justifying the use of fluorescent probes as a detection method.

This chapter seeks to propose a procedure for the design of qPCR assays using fluorescent hydrolysis probe technology. Particular attention will be paid to explaining the steps necessary to ensure the specificity of the oligonucleotides used as primers or fluorescent probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

bp:

Base pair

BHQ(-1 or -2):

Black Hole Quencher (-1 or -2)

Cq:

Quantification cycle

FAM:

Carboxyfluorescein

gDNA:

Genomic DNA; DABCYL: 4-4-dimethylamino-phenyl-azo-benzoic acid

HEX:

6-Carboxy-2,4,4,5,7,7-hexachlorofluorescein

JOE:

6-Carboxy4′,5′-dichloro-2′,7′-dimethoxyfluorescein

nt:

Nucleotide

qPCR:

Quantitative real-time PCR

ROX:

Carboxy-X-rhodamine

RT:

Reverse transcription reaction

ss/ds:

Single/double stranded

TAMRA:

Carboxytetramethylrhodamine

TET:

6-Carboxy-2′,4,7,7′-tetrachlorofluorescein

Tm:

Melting temperature

References

  1. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  Google Scholar 

  2. Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74:5350–5354

    Article  CAS  Google Scholar 

  3. Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous amplification and detection of specific DNA sequences. Biotechnology (N Y) 10:413–417

    Article  CAS  Google Scholar 

  4. Livak KJ, Flood SJ, Marmaro J et al (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4:357–362

    Article  CAS  Google Scholar 

  5. Bassler HA, Flood SJ, Livak KJ et al (1995) Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes. Appl Environ Microbiol 61:3724–3728

    Article  CAS  Google Scholar 

  6. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  Google Scholar 

  7. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601. https://doi.org/10.1677/jme.1.01755

    Article  CAS  PubMed  Google Scholar 

  8. Kubista M, Andrade JM, Bengtsson M et al (2006) The real-time polymerase chain reaction. Mol Asp Med 27:95–125. https://doi.org/10.1016/j.mam.2005.12.007

    Article  CAS  Google Scholar 

  9. Lyon E, Wittwer CT (2009) LightCycler technology in molecular diagnostics. J Mol Diagn 11:93–101. https://doi.org/10.2353/jmoldx.2009.080094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  Google Scholar 

  11. Navarro E, Serrano-Heras G, Castaño MJ, Solera J (2015) Real-time PCR detection chemistry. Clin Chim Acta 439:231–250. https://doi.org/10.1016/j.cca.2014.10.017

    Article  CAS  Google Scholar 

  12. Busi F, Arluison V, Régnier P (2018) Absolute regulatory small noncoding RNA concentration and decay rates measurements in Escherichia coli. Methods Mol Biol (Clifton, NJ) 1737:231–248

    Article  CAS  Google Scholar 

  13. Lie YS, Petropoulos CJ (1998) Advances in quantitative PCR technology: 5′ nuclease assays. Curr Opin Biotechnol 9:43–48

    Article  CAS  Google Scholar 

  14. Huang Q, Li Q (2009) Characterization of the 5′ to 3′ nuclease activity of Thermus aquaticus DNA polymerase on fluorogenic double-stranded probes. Mol Cell Probes 23:188–194. https://doi.org/10.1016/j.mcp.2009.04.002

    Article  CAS  PubMed  Google Scholar 

  15. Emig M, Saussele S, Wittor H et al (1999) Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia 13:1825–1832

    Article  CAS  Google Scholar 

  16. Didenko VV (2001) DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. BioTechniques 31:1106–1121. https://doi.org/10.2144/01315rv02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. https://doi.org/10.1038/nbt0396-303

    Article  CAS  Google Scholar 

  18. Buh Gasparic M, Tengs T, La Paz JL et al (2010) Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem 396:2023–2029. https://doi.org/10.1007/s00216-009-3418-0

    Article  CAS  PubMed  Google Scholar 

  19. Ryazantsev DY, Kvach MV, Tsybulsky DA et al (2014) Design of molecular beacons: 3′ couple quenchers improve fluorogenic properties of a probe in real-time PCR assay. Analyst 139:2867–2872. https://doi.org/10.1039/c4an00081a

    Article  CAS  PubMed  Google Scholar 

  20. Whitcombe D, Theaker J, Guy SP et al (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807. https://doi.org/10.1038/11751

    Article  CAS  PubMed  Google Scholar 

  21. Ugozzoli LA, Latorra D, Puckett R et al (2004) Real-time genotyping with oligonucleotide probes containing locked nucleic acids. Anal Biochem 324:143–152

    Article  CAS  Google Scholar 

  22. Mouritzen P, Nielsen AT, Pfundheller HM et al (2003) Single nucleotide polymorphism genotyping using locked nucleic acid (LNA™). Expert Rev Mol Diagn 3:27–38. https://doi.org/10.1586/14737159.3.1.27

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt A, Rott ME (2006) Real-time polymerase chain reaction (PCR) quantitative detection of Brassica napus using a locked nucleic acid TaqMan probe. J Agric Food Chem 54:1158–1165. https://doi.org/10.1021/jf052036m

    Article  CAS  PubMed  Google Scholar 

  24. Salvi S, D’Orso F, Morelli G (2008) Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes. J Agric Food Chem 56:4320–4327. https://doi.org/10.1021/jf800149j

    Article  CAS  PubMed  Google Scholar 

  25. Kutyavin IV, Afonina IA, Mills A et al (2000) 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28:655–661

    Article  CAS  Google Scholar 

  26. Kennedy B, Arar K, Reja V, Henry RJ (2006) Locked nucleic acids for optimizing displacement probes for quantitative real-time PCR. Anal Biochem 348:294–299. https://doi.org/10.1016/j.ab.2005.10.037

    Article  CAS  PubMed  Google Scholar 

  27. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  Google Scholar 

  28. Untergasser A, Nijveen H, Rao X et al (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74. https://doi.org/10.1093/nar/gkm306

    Article  PubMed  PubMed Central  Google Scholar 

  29. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115–e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291. https://doi.org/10.1093/bioinformatics/btm091

    Article  CAS  PubMed  Google Scholar 

  31. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  CAS  Google Scholar 

  32. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

  33. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  CAS  Google Scholar 

  34. Busi F, Cresteil T (2005) Phenotyping-genotyping of alternatively spliced genes in one step: study of CYP3A5∗3 polymorphism. Pharmacogenet Genomics 15:433–439

    Article  CAS  Google Scholar 

  35. Busi F, Cresteil T (2005) CYP3A5 mRNA degradation by nonsense-mediated mRNA decay. Mol Pharmacol 68:808–815. https://doi.org/10.1124/mol.105.014225

    Article  CAS  PubMed  Google Scholar 

  36. Bottema CD, Sommer SS (1993) PCR amplification of specific alleles: rapid detection of known mutations and polymorphisms. Mutat Res 288:93–102

    Article  CAS  Google Scholar 

  37. Wu DY, Ugozzoli L, Pal BK, Wallace RB (1989) Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A 86:2757–2760

    Article  CAS  Google Scholar 

  38. Seidel CAM, Schulz A, Sauer MHM (1996) Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem 100:5541–5553. https://doi.org/10.1021/jp951507c

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University Paris Diderot and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Busi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Busi, F. (2020). Fluorescent Oligonucleotide Probes for the Quantification of RNA by Real-Time qPCR. In: Arluison, V., Wien, F. (eds) RNA Spectroscopy. Methods in Molecular Biology, vol 2113. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0278-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0278-2_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0277-5

  • Online ISBN: 978-1-0716-0278-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics