Skip to main content

Radioisotope-Based Protocol for Determination of Central Carbon Metabolism in T Cells

  • Protocol
  • First Online:
T-Cell Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2111))

Abstract

T lymphocytes are the major components of the adaptive immune system. It’s been known that T cells are able to engage a diverse range of metabolic programs to meet the metabolic demands during their life cycle from early development, activation to functional differentiation. Central carbon metabolic pathways provide energy, reducing power, and biosynthetic precursors to support T cell homeostasis, proliferation, and immune functions. As such, quantitative or semiquantitative analysis of central carbon metabolic flux activities offers mechanistic details, as well as insights into the regulation of metabolic pathways and the impact of changing metabolic programs on T cell life cycle. Global profiling of cellular metabolites by mass spectrometry-based metabolomics and metabolic flux analysis (MFA) using radioactive and nonradioactive/stable isotope approaches are powerful tools for determination of central carbon metabolic pathway activity. Here, we describe in detail the procedure for the radioisotope-based approach of analyzing central carbon metabolic fluxes in T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slack M, Wang T, Wang R (2015) T cell metabolic reprogramming and plasticity. Mol Immunol 68(2 Pt C):507–512. https://doi.org/10.1016/j.molimm.2015.07.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pearce EL, Poffenberger MC, Chang C-H, Jones RG (2013) Fueling immunity: insights into metabolism and lymphocyte function. Science (New York, NY) 342(6155):1242454–1242454. https://doi.org/10.1126/science.1242454

    Article  CAS  Google Scholar 

  3. Verbist KC, Guy CS, Milasta S, Liedmann S, Kamiński MM, Wang R, Green DR (2016) Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature 532(7599):389–393. https://doi.org/10.1038/nature17442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang R, Green DR (2012) Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev 249(1):14–26. https://doi.org/10.1111/j.1600-065X.2012.01155.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang R, Green DR (2012) Metabolic checkpoints in activated T cells. Nat Immunol 13:907. https://doi.org/10.1038/ni.2386

    Article  CAS  PubMed  Google Scholar 

  6. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882. https://doi.org/10.1016/j.immuni.2011.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang R, Green DR (2012) The immune diet: meeting the metabolic demands of lymphocyte activation. F1000 Biol Rep 4:9. https://doi.org/10.3410/B4-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G (2018) Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol 36(4):316–320. https://doi.org/10.1038/nbt.4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B, Gottlieb E, Hiller K, Jones RG, Kamphorst JJ, Kibbey RG, Kimmelman AC, Locasale JW, Lunt SY, Maddocks ODK, Malloy C, Metallo CM, Meuillet EJ, Munger J, Nöh K, Rabinowitz JD, Ralser M, Sauer U, Stephanopoulos G, St-Pierre J, Tennant DA, Wittmann C, Vander Heiden MG, Vazquez A, Vousden K, Young JD, Zamboni N, Fendt S-M (2015) A roadmap for interpreting (13)C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201. https://doi.org/10.1016/j.copbio.2015.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD (2017) Metabolite measurement: pitfalls to avoid and practices to follow. Annu Rev Biochem 86:277–304. https://doi.org/10.1146/annurev-biochem-061516-044952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan TWM, Lane AN (2016) Applications of NMR spectroscopy to systems biochemistry. Prog Nucl Magn Reson Spectrosc 92–93:18–53. https://doi.org/10.1016/j.pnmrs.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wolfe RR, Chinkes DL (2005) Isotope tracers in metabolic research: principles and practice of kinetic analysis. Wiley, Hoboken, NJ

    Google Scholar 

  13. Goodwin GW, Cohen DM, Taegtmeyer H (2001) [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway. Am J Physiol Endocrinol Metab 280(3):E502–E508. https://doi.org/10.1152/ajpendo.2001.280.3.E502

    Article  CAS  PubMed  Google Scholar 

  14. Ashcroft SJ, Weerasinghe LC, Bassett JM, Randle PJ (1972) The pentose cycle and insulin release in mouse pancreatic islets. Biochem J 126(3):525–532

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brivet M, Slama A, Saudubray J-M, Legrand A, Lemonnier A (1995) Rapid diagnosis of long chain and medium chain fatty acid oxidation disorders using lymphocytes. Ann Clin Biochem 32(2):154–159. https://doi.org/10.1177/000456329503200204

    Article  PubMed  Google Scholar 

  16. Moon A, Rhead WJ (1987) Complementation analysis of fatty acid oxidation disorders. J Clin Invest 79(1):59–64. https://doi.org/10.1172/JCI112808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ando S, Tomita-Yamaguchi M, Santoro TJ (1993) Long chain fatty acid utilization of T-cells from autoimmune MRL-lpr/lpr mice. Biochim Biophys Acta (BBA) - Mol Basis Dis 1181(2):141–147. https://doi.org/10.1016/0925-4439(93)90103-8

    Article  CAS  Google Scholar 

  18. Brand K, Williams JF, Weidemann MJ (1984) Glucose and glutamine metabolism in rat thymocytes. Biochem J 221(2):471–475

    Article  CAS  Google Scholar 

  19. Willems HL, de Kort TF, Trijbels FJ, Monnens LA, Veerkamp JH (1978) Determination of pyruvate oxidation rate and citric acid cycle activity in intact human leukocytes and fibroblasts. Clin Chem 24(2):200

    CAS  PubMed  Google Scholar 

  20. Katz J, Wood HG (1960) The use of glucose-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem 235(8):2165–2177

    CAS  PubMed  Google Scholar 

  21. Wood HG, Katz J, Landau BR (1963) Estimation of pathways of carbohydrate metabolism. Biochem Z 338:809–847

    CAS  PubMed  Google Scholar 

  22. Yao C-H, Liu G-Y, Wang R, Moon SH, Gross RW, Patti GJ (2018) Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS Biol 16(3):e2003782. https://doi.org/10.1371/journal.pbio.2003782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, Samborska B, Hsieh WY, Wong AH, Stüve P, Arnold-Schrauf C, Guderian M, Lochner M, Rampertaap S, Romito K, Monsale J, Brönstrup M, Bensinger SJ, Murphy AN, McGuire PJ, Jones RG, Sparwasser T, Berod L (2018) Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab 28(3):504–515.e507. https://doi.org/10.1016/j.cmet.2018.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by 1R01AI114581 from the National Institute of Health and 128436-RSG-15-180-01-LIB from the American Cancer Society (R.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruoning Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, X., Sherman, J.W., Wang, R. (2020). Radioisotope-Based Protocol for Determination of Central Carbon Metabolism in T Cells. In: Liu, C. (eds) T-Cell Receptor Signaling. Methods in Molecular Biology, vol 2111. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0266-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0266-9_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0265-2

  • Online ISBN: 978-1-0716-0266-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics