Skip to main content

Detection of MicroRNAs Released from Argonautes

  • Protocol
  • First Online:
RNA Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2106))

Abstract

The Argonaute (AGO) family of proteins plays an essential role in the process of microRNA (miRNA)-mediated gene silencing. More specifically, they are the only known proteins to associate directly with miRNAs within the RNA-induced silencing complex (RISC). Given the importance of miRNA regulation of the transcriptome and its vast implications for human disease, it is essential to understand the molecular underpinnings of miRNA-AGO interactions. Although there are methods available to investigate mature miRNA decay and loading onto AGO2, no feasible method exists to detail the opposite process: release of miRNA from associated AGO proteins. In this chapter, we describe in detail a methodology derived from biochemical approaches, which can be used to quantify the release of any given miRNA from AGOs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu E et al (2017) A continuum of mRNP complexes in embryonic microRNA-mediated silencing. Nucleic Acids Res 45(4):2081–2098

    CAS  PubMed  Google Scholar 

  2. Gehring NH, Wahle E, Fischer U (2017) Deciphering the mRNP Code: RNA-bound determinants of post-transcriptional gene regulation. Trends Biochem Sci 42:369–382

    Article  CAS  Google Scholar 

  3. Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51

    Article  CAS  Google Scholar 

  4. Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433

    Article  CAS  Google Scholar 

  5. Pasquinelli AE (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271

    Article  CAS  Google Scholar 

  6. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  Google Scholar 

  7. Kwon SC et al (2016) Structure of human DROSHA. Cell 164:81–90

    Article  CAS  Google Scholar 

  8. Nguyen TA, Park J, Dang TL, Choi Y-G, Kim VN (2018) Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic Acids Res 46(11):5726–5736

    Article  CAS  Google Scholar 

  9. Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415

    Article  CAS  Google Scholar 

  10. Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  CAS  Google Scholar 

  11. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  CAS  Google Scholar 

  12. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    Article  CAS  Google Scholar 

  13. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32:4776–4785

    Article  CAS  Google Scholar 

  14. Hutvágner G et al (2001) A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  Google Scholar 

  15. Park J-E et al (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475:201

    Article  CAS  Google Scholar 

  16. Tian Y et al (2014) A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human dicer. Mol Cell 53:606–616

    Article  CAS  Google Scholar 

  17. Iwasaki S et al (2010) Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell 39:292–299

    Article  CAS  Google Scholar 

  18. Naruse K, Matsuura-Suzuki E, Watanabe M, Iwasaki S, Tomari Y (2018) In vitro reconstitution of chaperone-mediated human RISC assembly. RNA 24:6–11

    Article  CAS  Google Scholar 

  19. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  Google Scholar 

  20. Okamura K, Liu N, Lai EC (2009) Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell 36:431–444

    Article  CAS  Google Scholar 

  21. Jo MH et al (2015) Human Argonaute 2 has diverse reaction pathways on target RNAs. Mol Cell 59:117–124

    Article  CAS  Google Scholar 

  22. Yao C, Sasaki HM, Ueda T, Tomari Y, Tadakuma H (2015) Single-molecule analysis of the target cleavage reaction by the Drosophila RNAi enzyme complex. Mol Cell 59:125–132

    Article  CAS  Google Scholar 

  23. Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V (2015) Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell 162:84–95

    Article  CAS  Google Scholar 

  24. Chandradoss SD, Schirle NT, Szczepaniak M, MacRae IJ, Joo CA (2015) Dynamic search process underlies microRNA targeting. Cell 162:96–107

    Article  CAS  Google Scholar 

  25. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586–593

    Article  CAS  Google Scholar 

  26. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    Article  CAS  Google Scholar 

  27. Nakanishi K (2016) Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip Rev RNA 7:637–660

    Article  CAS  Google Scholar 

  28. Janas MM et al (2012) Alternative RISC assembly: binding and repression of microRNA–mRNA duplexes by human Ago proteins. RNA 18:2041–2055

    Article  CAS  Google Scholar 

  29. Yoon J-H et al (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:2939

    Article  Google Scholar 

  30. Yoon JH et al (2015) AUF1 promotes let-7b loading on Argonaute 2. Genes Dev 29:1599–1604

    Article  CAS  Google Scholar 

  31. Min KW et al (2017) AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res 45(10):6064–6073

    Article  CAS  Google Scholar 

  32. Zealy RW, Wrenn SP, Davila S, Min K-W, Yoon J-H (2017) microRNA-binding proteins: specificity and function. Wiley Interdiscip Rev RNA 8:e1414

    Article  Google Scholar 

  33. Baccarini A et al (2011) Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21:369–376

    Article  CAS  Google Scholar 

  34. Golden RJ et al (2017) An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542:197–202

    Article  CAS  Google Scholar 

  35. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 5:e19276

    Article  Google Scholar 

  36. Choi YJ, Yoon J-H, Chang JH (2016) Crystal structure of the N-terminal RNA recognition motif of mRNA decay regulator AUF1. Biomed Res Int 2016:9

    Google Scholar 

  37. Kota V et al (2016) SUMO-modification of the La protein facilitates binding to mRNA in vitro and in cells. PLoS One 11:e0156365

    Article  Google Scholar 

  38. Jee D, Lai EC (2014) Alteration of miRNA activity via context-specific modifications of Argonaute proteins. Trends Cell Biol 24:546–553

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Medical University of South Carolina and Hollings Cancer Center to J.H.Y. 2019 Academic Research Support Program in Gangneung-Wonju National University to K.W.M

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Je-Hyun Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Min, KW., Evans, J.G., Won, E.C., Yoon, JH. (2020). Detection of MicroRNAs Released from Argonautes. In: Heise, T. (eds) RNA Chaperones. Methods in Molecular Biology, vol 2106. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0231-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0231-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0230-0

  • Online ISBN: 978-1-0716-0231-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics