Skip to main content

Use of tRNA-Mediated Suppression to Assess RNA Chaperone Function

  • Protocol
  • First Online:
RNA Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2106))

Abstract

La proteins have well-established roles in the maturation of RNA polymerase III transcripts, including pre-tRNAs. In addition to protecting the 3′ end of pre-tRNAs from exonuclease digestion, La proteins also promote the native fold of the pre-tRNA using RNA chaperone activity. tRNA-mediated suppression in the fission yeast S. pombe has been an invaluable tool in determining the mechanistic basis by which La proteins promote the maturation of defective pre-tRNAs that benefit from RNA chaperone activity. More recently, tRNA-mediated suppression has been adapted to test for RNA chaperone function in the La-related proteins and in the promoting of tRNA function by tRNA modification enzymes. Thus tRNA-mediated suppression can be a useful assay for the investigation of various proteins hypothesized to promote tRNA folding through RNA chaperone related activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajkowitsch L, Semrad K, Mayer O, Schroeder R (2005) Assays for the RNA chaperone activity of proteins. Biochem Soc Trans. https://doi.org/10.1042/BST0330450

  2. Clodi E, Semrad K, Schroeder R (1999) Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J. https://doi.org/10.1093/emboj/18.13.3776

  3. Phadtare S, Severinov K, Inouye M (2003) Assay of transcription antitermination by proteins of the CspA family. Methods Enzymol. https://doi.org/10.1016/S0076-6879(03)71034-9

  4. Yoo CJ, Wolin SL (1997) The yeast La protein is required for the 3′ endonucleolytic cleavage that matures tRNA precursors. Cell. https://doi.org/10.1016/S0092-8674(00)80220-2

  5. Naeeni AR, Conte MR, Bayfield MA (2012) RNA chaperone activity of human La protein is mediated by variant RNA recognition motif. J Biol Chem. https://doi.org/10.1074/jbc.M111.276071

  6. Huang Y, Bayfield MA, Intine RV, Maraia RJ (2006) Separate RNA-binding surfaces on the multifunctional la protein mediate distinguishable activities in tRNA maturation. Nat Struct Mol Biol 13:611–618

    Article  CAS  Google Scholar 

  7. Kucera NJ, Hodsdon ME, Wolin SL (2011) An intrinsically disordered C terminus allows the La protein to assist the biogenesis of diverse noncoding RNA precursors. Proc Natl Acad Sci U S A 108:1308–1313

    Article  CAS  Google Scholar 

  8. Kuehnert J, Sommer G, Zierk AW, Fedarovich A, Brock A, Fedarovich D, Heise T (2015) Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation. Nucleic Acids Res 43:581–594

    Article  CAS  Google Scholar 

  9. Costa-Mattioli M, Svitkin Y, Sonenberg N (2004) La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Mol Cell Biol. https://doi.org/10.1128/MCB.24.15.6861-6870.2004

  10. Vakiloroayaei A, Shah NS, Oeffinger M, Bayfield MA (2017) The RNA chaperone La promotes pre-tRNA maturation via indiscriminate binding of both native and misfolded targets. Nucleic Acids Res 45:11341–11355

    Article  CAS  Google Scholar 

  11. Kohli J, Kwong T, Altruda F, Söll D, Wahl G (1979) Characterization of a UGA-suppressing serine tRNA from Schizosaccharomyces pombe with the help of a new in vitro assay system for eukaryotic suppressor tRNAs. J Biol Chem 254(5):1546–1551

    CAS  PubMed  Google Scholar 

  12. Rijal K, Maraia RJ, Arimbasseri AG (2015) A methods review on use of nonsense suppression to study 3′ end formation and other aspects of tRNA biogenesis. Gene. https://doi.org/10.1016/j.gene.2014.11.034

  13. Koukuntla R, Ramsey WJ, Young WB, Link CJ (2013) U6 promoter-enhanced GlnUAG suppressor tRNA has higher suppression efficacy and can be stably expressed in 293 cells. J Gene Med. https://doi.org/10.1002/jgm.2696

  14. Szankasi P, Heyer WD, Schuchert P, Kohli J (1988) DNA sequence analysis of the ade6 gene of Schizosaccharomyces pombe. Wild-type and mutant alleles including the recombination hot spot allele ade6-M26. J Mol Biol. https://doi.org/10.1016/0022-2836(88)90051-4

  15. Hussain RH, Zawawi M, Bayfield MA (2013) Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt649

  16. Hamada M, Sakulich AL, Koduru SB, Maraia RJ (2000) Transcription termination by RNA polymerase III in fission yeast. A genetic and biochemically tractable model system. J Biol Chem 275:29076–29081

    Article  CAS  Google Scholar 

  17. Intine RV, Sakulich AL, Koduru SB, Huang Y, Pierstorff E, Goodier JL, Phan L, Maraia RJ (2000) Control of transfer RNA maturation by phosphorylation of the human La antigen on serine 366. Mol Cell 6:339–348

    Article  CAS  Google Scholar 

  18. Van Horn DJ, Yoo CJ, Xue D, Shi H, Wolin SL (1997) The La protein in Schizosaccharomyces pombe: a conserved yet dispensable phosphoprotein that functions in tRNA maturation. RNA (New York, NY). https://doi.org/10.1101/gad.241422.114

  19. Arimbasseri AG, Blewett NH, Iben JR, Lamichhane TN, Cherkasova V, Hafner M, Maraia RJ (2015) RNA polymerase III output is functionally linked to tRNA dimethyl-G26 modification. PLoS Genet 11:e1005671

    Article  Google Scholar 

  20. Maundrell K (1993) Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene 123:127–130

    Article  CAS  Google Scholar 

  21. Keeney JB, Boeke JD (1994) Efficient targeted integration at leu1-32 and ura4-294 in Schizosaccharomyces pombe. Genetics 136:849–856

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wetzel R, Kohli J, Altruda F, Söll D (1979) Identification and nucleotide sequence of the sup8-e UGA-suppressor leucine tRNA from Schizosaccharomyces pombe. Mol Gen Genet 172:221–228

    Article  CAS  Google Scholar 

  23. Hottinger H, Stadelmann B, Pearson D, Frendewey D, Kohli J, Söll D (1984) The Schizosaccharomyces pombe sup3-i suppressor recognizes ochre, but not amber codons in vitro and in vivo. EMBO J 3:423–428

    Article  CAS  Google Scholar 

  24. Niederberger C, Gräub R, Costa A, Desgrès J, Schweingruber ME (1999) The tRNA N2,N2-dimethylguanosine-26 methyltransferase encoded by gene trm1 increases efficiency of suppression of an ochre codon in Schizosaccharomyces pombe. FEBS Lett 464:67–70

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank R. Maraia, R. Intine, Y. Huang, A. Sakulich, S. Koduru, S. Hasson, A. Mozlin, J. Mazeika, R. Hussain, A. Vakiloroayaei, and A. Naeeni for their assistance in the development of tRNA-mediated suppression and its use in assessment of RNA chaperone function. We also thank R. Maraia for critical reading of the manuscript. This work is supported by a Discovery Grant from the Natural Science and Engineering Research Council (NSERC) of Canada to MA Bayfield and an NSERC CGS-M scholarship to J Porat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Bayfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Porat, J., Bayfield, M.A. (2020). Use of tRNA-Mediated Suppression to Assess RNA Chaperone Function. In: Heise, T. (eds) RNA Chaperones. Methods in Molecular Biology, vol 2106. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0231-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0231-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0230-0

  • Online ISBN: 978-1-0716-0231-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics