Skip to main content

Real-Time Fluorescence-Based Approaches to Disentangle Mechanisms of a Protein’s RNA Chaperone Activity

  • Protocol
  • First Online:
RNA Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2106))

Abstract

RNA-binding proteins with an RNA chaperone activity exert either one or both of the following catalytic activities: (1) RNA annealing, i.e., the protein supports intra- as well as intermolecular RNA-RNA interactions and (2) strand displacement, i.e., the protein mediates the exchange of individual strands of a preexisting RNA duplex. To discriminate and further characterize these activities, it requires defined assay systems. These are based on entirely or partially complementary RNA oligonucleotides that are labeled with fluorescent and/or quencher dyes. The non-catalyzed and the protein-supported associations of the RNA molecules are followed by a real-time fluorescence resonance energy transfer (FRET) system. By site-specific modification of the RNAs or the protein, the substrate- and protein-specific parameters of the RNA chaperone activity can be explored and identified.

In this chapter, we present strategies on the design of labeled RNA molecules to be used to characterize the activities of an RNA-binding protein and explain how to monitor progress curves of RNA annealing and strand displacement reactions in single cuvette or well-plate scales. We provide sets of equations and models to determine and analyze different types of reactions, e.g., by calculation of first- and second-order rate constants. Likewise, we demonstrate how to exploit these simple experimental setups to elucidate elementary principles of the reaction mechanisms performed by the protein of interest by applying basic kinetic applications, such as ARRHENIUS and linear free energy relationship analyses. These approaches will be explained by providing example plots and graphs from experiments investigating the RNA chaperone activities of the RNA-binding proteins NF90-NF45 and AUF1 p45.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kieft JS (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33(6):274–283

    Article  CAS  Google Scholar 

  2. Mitchell M et al (2010) Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol 17(4):513–518

    Article  CAS  Google Scholar 

  3. Mason M, Schuller A, Skordalakes E (2011) Telomerase structure function. Curr Opin Struct Biol 21(1):92–100

    Article  CAS  Google Scholar 

  4. Kim H et al (2014) Protein-guided RNA dynamics during early ribosome assembly. Nature 506(7488):334–338

    Article  CAS  Google Scholar 

  5. Friedrich S et al (2016) Arginine methylation enhances the RNA chaperone activity of the West Nile virus host factor AUF1 p45. RNA 22(10):1574–1591

    Article  CAS  Google Scholar 

  6. Friedrich S et al (2014) AUF1 p45 promotes West Nile virus replication by an RNA chaperone activity that supports cyclization of the viral genome. J Virol 88(19):11586–11599

    Article  Google Scholar 

  7. Updegrove TB, Zhang A, Storz G (2016) Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 30:133–138

    Article  CAS  Google Scholar 

  8. Friedrich S et al (2018) The host factor AUF1 p45 supports flavivirus propagation by triggering the RNA switch required for viral genome cyclization. J Virol 92(6). https://doi.org/10.1128/JVI.01647-17

  9. Muller UF, Goringer HU (2002) Mechanism of the gBP21-mediated RNA/RNA annealing reaction: matchmaking and charge reduction. Nucleic Acids Res 30(2):447–455

    Article  Google Scholar 

  10. Schmidt T et al (2017) NF90-NF45 is a selective RNA chaperone that rearranges viral and cellular riboswitches: biochemical analysis of a virus host factor activity. Nucleic Acids Res 45(21):12441–12454

    Article  CAS  Google Scholar 

  11. Doetsch M et al (2011) The RNA annealing mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-competent conformation. Nucleic Acids Res 39(10):4405–4418

    Article  CAS  Google Scholar 

  12. Doetsch M et al (2013) Study of E. coli Hfq’s RNA annealing acceleration and duplex destabilization activities using substrates with different GC-contents. Nucleic Acids Res 41(1):487–497

    Article  CAS  Google Scholar 

  13. Rajkowitsch L, Schroeder R (2007) Coupling RNA annealing and strand displacement: a FRET-based microplate reader assay for RNA chaperone activity. Biotechniques 43(3):304, 306, 308 passim

    Article  Google Scholar 

  14. Rajkowitsch L, Schroeder R (2007) Dissecting RNA chaperone activity. RNA 13(12):2053–2060

    Article  CAS  Google Scholar 

  15. Rajkowitsch L et al (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4(3):118–130

    Article  CAS  Google Scholar 

  16. Herschlag D et al (1994) An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J 13(12):2913–2924

    Article  CAS  Google Scholar 

  17. Clodi E, Semrad K, Schroeder R (1999) Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J 18(13):3776–3782

    Article  CAS  Google Scholar 

  18. Yang Q, Jankowsky E (2005) ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44(41):13591–13601

    Article  CAS  Google Scholar 

  19. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Deutsche Forschungsgemeinschaft (GRK 1026; BE1885/7; BE1885/12-1). We thank Christine Hamann for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias Schmidt or Sven-Erik Behrens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schmidt, T., Friedrich, S., Golbik, R.P., Behrens, SE. (2020). Real-Time Fluorescence-Based Approaches to Disentangle Mechanisms of a Protein’s RNA Chaperone Activity. In: Heise, T. (eds) RNA Chaperones. Methods in Molecular Biology, vol 2106. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0231-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0231-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0230-0

  • Online ISBN: 978-1-0716-0231-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics