Skip to main content

Disordered RNA-Binding Region Prediction with DisoRDPbind

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2106))

Abstract

RNA chaperone activity is one of the many functions of intrinsically disordered regions (IDRs). IDRs function without the prerequisite of a stable structure. Instead, their functions arise from structural ensembles. A common theme in IDR function is molecular recognition; IDRs mediate interactions with other proteins, RNA, and DNA. Many computational methods are available to predict IDRs from protein sequence, but relatively few are available for predicting IDR functions. Available methods primarily focus on protein-protein interactions. DisoRDPbind was developed to predict several protein functions including interactions with RNA. This method is available as a user-friendly web interface, located at http://biomine.cs.vcu.edu/servers/DisoRDPbind/. The development and architecture of DisoRDPbind is briefly presented, and its accuracy relative to other RNA-binding residue predictors is discussed. We explain usage of the web interface in detail and provide an example of prediction results and interpretation. While DisoRDPbind does not identify RNA chaperones directly, we provide a case study of an RNA chaperone, HCV core protein, as an example of the method’s utility in the study of RNA chaperones.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dunker AK, Obradovic Z (2001) The protein trinity–linking function and disorder. Nat Biotechnol 19(9):805–806

    Article  CAS  PubMed  Google Scholar 

  3. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293(2):321–331

    Article  CAS  PubMed  Google Scholar 

  4. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41(3):415–427

    Article  CAS  PubMed  Google Scholar 

  5. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4):827–839

    Article  CAS  PubMed  Google Scholar 

  6. Walsh I, Martin AJ, Di Domenico T, Tosatto SC (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28(4):503–509

    Article  CAS  PubMed  Google Scholar 

  7. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Meng F, Uversky VN, Kurgan L (2017) Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions. Cell Mol Life Sci 74(17):3069–3090

    Article  CAS  PubMed  Google Scholar 

  9. Lieutaud P, Ferron F, Uversky AV, Kurgan L, Uversky VN, Longhi S (2016) How disordered is my protein and what is its disorder for? A guide through the “dark side” of the protein universe. Intrinsically Disord Proteins 4(1):e1259708

    Article  PubMed  PubMed Central  Google Scholar 

  10. Monastyrskyy B, Kryshtafovych A, Moult J, Tramontano A, Fidelis K (2014) Assessment of protein disorder region predictions in CASP10. Proteins 82(Suppl 2):127–137

    Article  CAS  PubMed  Google Scholar 

  11. Necci M, Piovesan D, Dosztanyi Z, Tompa P, Tosatto SCE (2017) A comprehensive assessment of long intrinsic protein disorder from the DisProt database. Bioinformatics 34(3):445–452

    Article  CAS  Google Scholar 

  12. Fan X, Kurgan L (2014) Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. J Biomol Struct Dyn 32(3):448–464

    Article  CAS  PubMed  Google Scholar 

  13. Meng F, Uversky V, Kurgan L (2017) Computational prediction of intrinsic disorder in proteins. Curr Protoc Protein Sci 88:2 16 11–2 16 14

    Google Scholar 

  14. Mizianty MJ, Stach W, Chen K, Kedarisetti KD, Disfani FM, Kurgan L (2010) Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 26(18):i489–i496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31(6):857–863

    Article  CAS  PubMed  Google Scholar 

  16. Peng Z, Mizianty MJ, Kurgan L (2014) Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins 82(1):145–158

    Article  CAS  PubMed  Google Scholar 

  17. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30(2):137–149

    Article  CAS  PubMed  Google Scholar 

  18. Pancsa R, Tompa P (2012) Structural disorder in eukaryotes. PLoS One 7(4):e34687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645

    Article  CAS  PubMed  Google Scholar 

  20. Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37(12):509–516

    Article  CAS  PubMed  Google Scholar 

  21. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151

    Article  CAS  PubMed  Google Scholar 

  22. Hu G, Wang K, Song J, Uversky VN, Kurgan L (2018) Taxonomic landscape of the dark proteomes: whole-proteome scale interplay between structural darkness, intrinsic disorder, and crystallization propensity. Proteomics 18:e1800243

    Article  PubMed  CAS  Google Scholar 

  23. Yan J, Mizianty MJ, Filipow PL, Uversky VN, Kurgan L (2013) RAPID: fast and accurate sequence-based prediction of intrinsic disorder content on proteomic scale. Biochim Biophys Acta 1834(8):1671–1680

    Article  CAS  PubMed  Google Scholar 

  24. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

    Article  CAS  PubMed  Google Scholar 

  25. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41(21):6573–6582

    Article  CAS  PubMed  Google Scholar 

  26. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6(5):1882–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen JW, Romero P, Uversky VN, Dunker AK (2006) Conservation of intrinsic disorder in protein domains and families: II. Functions of conserved disorder. J Proteome Res 5(4):888–898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cumberworth A, Lamour G, Babu MM, Gsponer J (2013) Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem J 454:361–369

    Article  CAS  PubMed  Google Scholar 

  29. Dyson HJ (2012) Roles of intrinsic disorder in protein-nucleic acid interactions. Mol BioSyst 8(1):97–104

    Article  CAS  PubMed  Google Scholar 

  30. Fuxreiter M, Toth-Petroczy A, Kraut DA, Matouschek AT, Lim RYH, Xue B, Kurgan L, Uversky VN (2014) Disordered proteinaceous machines. Chem Rev 114(13):6806–6843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2(8):890–901

    Article  CAS  Google Scholar 

  32. Peng Z, Oldfield CJ, Xue B, Mizianty MJ, Dunker AK, Kurgan L, Uversky VN (2014) A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cell Mol Life Sci 71(8):1477–1504

    Article  CAS  PubMed  Google Scholar 

  33. Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN (2012) More than just tails: intrinsic disorder in histone proteins. Mol BioSyst 8(7):1886–1901

    Article  CAS  PubMed  Google Scholar 

  34. Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18(11):1169–1175

    Article  CAS  PubMed  Google Scholar 

  35. Wu Z, Hu G, Yang J, Peng Z, Uversky VN, Kurgan L (2015) In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces. FEBS Lett 589(19 Pt A):2561–2569

    Article  CAS  PubMed  Google Scholar 

  36. Wang C, Uversky VN, Kurgan L (2016) Disordered nucleiome: abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, bacteria and Archaea. Proteomics 16(10):1486–1498

    Article  CAS  PubMed  Google Scholar 

  37. Chowdhury S, Zhang J, Kurgan L (2018) In silico prediction and validation of novel RNA binding proteins and residues in the human proteome. Proteomics 18:e1800064

    Article  PubMed  CAS  Google Scholar 

  38. Ivanyi-Nagy R, Davidovic L, Khandjian EW, Darlix J-L (2005) Disordered RNA chaperone proteins: from functions to disease. Cell Mol Life Sci 62(13):1409–1417

    Article  CAS  PubMed  Google Scholar 

  39. Liu ZP, Wu LY, Wang Y, Zhang XS, Chen LN (2010) Prediction of protein-RNA binding sites by a random forest method with combined features. Bioinformatics 26(13):1616–1622

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Huang C, Yang MQ, Yang JY (2010) BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Syst Biol 4(1):S3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Walia RR, Xue LC, Wilkins K, El-Manzalawy Y, Dobbs D, Honavar V (2014) RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins. PLoS One 9(5):e97725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang L, Brown SJ (2006) BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res 34(Web Server):W243–W248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar M, Gromiha MM, Raghava GP (2008) Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins 71(1):189–194

    Article  CAS  PubMed  Google Scholar 

  44. Yang X, Wang J, Sun J, Liu R (2015) SNBRFinder: a sequence-based hybrid algorithm for enhanced prediction of nucleic acid-binding residues. PLoS One 10(7):e0133260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Walia RR, Caragea C, Lewis BA, Towfic F, Terribilini M, El-Manzalawy Y, Dobbs D, Honavar V (2012) Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art. BMC Bioinformatics 13:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan J, Kurgan L (2017) DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues. Nucleic Acids Res 45(10):e84

    PubMed  PubMed Central  Google Scholar 

  47. Yan J, Friedrich S, Kurgan L (2016) A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues. Brief Bioinform 17(1):88–105

    Article  CAS  PubMed  Google Scholar 

  48. Meszaros B, Simon I, Dosztanyi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5(5):e1000376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Khan W, Duffy F, Pollastri G, Shields DC, Mooney C (2013) Predicting binding within disordered protein regions to structurally characterised peptide-binding domains. PLoS One 8(9):e72838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Disfani FM, Hsu WL, Mizianty MJ, Oldfield CJ, Xue B, Dunker AK, Uversky VN, Kurgan L (2012) MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. Bioinformatics 28(12):i75–i83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Meng F, Kurgan L (2018) High-throughput prediction of disordered moonlighting regions in protein sequences. Proteins 86(10):1097–1110

    Article  CAS  PubMed  Google Scholar 

  52. Meng F, Kurgan L (2016) DFLpred: high-throughput prediction of disordered flexible linker regions in protein sequences. Bioinformatics 32(12):i341–i350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oldfield CJ, Uversky VN, Kurgan L (2018) Predicting functions of disordered proteins with MoRFpred. Methods Mol Biol 1851:337–352

    Article  CAS  Google Scholar 

  54. Yan J, Dunker AK, Uversky VN, Kurgan L (2016) Molecular recognition features (MoRFs) in three domains of life. Mol BioSyst 12(3):697–710

    Article  CAS  PubMed  Google Scholar 

  55. Peng Z, Kurgan L (2015) High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder. Nucleic Acids Res 43(18):e121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Peng Z, Wang C, Uversky VN, Kurgan L (2017) Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind. Methods Mol Biol 1484:187–203

    Article  CAS  PubMed  Google Scholar 

  57. Gawlik K, Gallay PA (2014) HCV core protein and virus assembly: what we know without structures. Immunol Res 60(1):1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ivanyi-Nagy R, Lavergne J-P, Gabus C, Ficheux D, Darlix J-L (2008) RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 36(3):712–725

    Article  CAS  PubMed  Google Scholar 

  59. Sharma K, Didier P, Darlix JL, de Rocquigny H, Bensikaddour H, Lavergne JP, Penin F, Lessinger JM, Mely Y (2010) Kinetic analysis of the nucleic acid chaperone activity of the hepatitis C virus core protein. Nucleic Acids Res 38(11):3632–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Piovesan D, Tabaro F, Mičetić I, Necci M, Quaglia F, Oldfield CJ, Aspromonte MC, Davey NE, Davidović R, Dosztányi Z, Elofsson A, Gasparini A, Hatos A, Kajava AV, Kalmar L, Leonardi E, Lazar T, Macedo-Ribeiro S, Macossay-Castillo M, Meszaros A, Minervini G, Murvai N, Pujols J, Roche DB, Salladini E, Schad E, Schramm A, Szabo B, Tantos A, Tonello F, Tsirigos KD, Veljković N, Ventura S, Vranken W, Warholm P, Uversky VN, Dunker AK, Longhi S, Tompa P, Tosatto SCE (2017) DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res 45(Database issue):D219–D227

    Article  CAS  PubMed  Google Scholar 

  61. Wootton JC, Federhen S (1993) Statistics of local complexity in amino-acid-sequences and sequence databases. Comput Chem 17(2):149–163

    Article  CAS  Google Scholar 

  62. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405

    Article  CAS  PubMed  Google Scholar 

  63. Kawashima S, Ogata H, Kanehisa M (1999) AAindex: amino acid index database. Nucleic Acids Res 27(1):368–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. World Health Assembly (2010) Viral hepatitis: report by the secretariat, vol A63/15. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Robert J. Mattauch Endowment funds and the National Science Foundation grant 1617369 to Lukasz Kurgan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukasz Kurgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oldfield, C.J., Peng, Z., Kurgan, L. (2020). Disordered RNA-Binding Region Prediction with DisoRDPbind. In: Heise, T. (eds) RNA Chaperones. Methods in Molecular Biology, vol 2106. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0231-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0231-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0230-0

  • Online ISBN: 978-1-0716-0231-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics