Skip to main content

Induction of Lung Tumors and Mutational Analysis in FVB/N Mice Treated with the Tobacco Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone

  • Protocol
  • First Online:
Molecular Toxicology Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2102))

Abstract

Lung cancer remains the leading cause of cancer-related deaths worldwide. In order to understand lung cancer biology and evaluate novel therapeutic strategies, preclinical mouse models have been developed that mimic early and advanced-stage lung cancer. Among autochthonous models, carcinogen-induced systems are valuable preclinical tools since tobacco smoking remains the number one risk factor for lung tumor development. Among the several thousand chemicals within cigarette smoke, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent carcinogen with tumorigenic effects described in both mice and humans. Herein, we describe the methodology for inducing lung tumors in mice using the tobacco carcinogen NNK and subsequent lung fixation for quantitative assessment of tumor development and analysis of oncogenic mutations in tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society. Cancer Facts & Figures 2019. Atlanta: American Cancer Society; 2019

    Google Scholar 

  2. Wakamatsu N, Devereux TR, Hong HH, Sills RC (2007) Overview of the molecular carcinogenesis of mouse lung tumor models of human lung cancer. Toxicol Pathol 35(1):75–80. https://doi.org/10.1080/01926230601059993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khuder SA (2001) Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer 31(2-3):139–148

    Article  CAS  Google Scholar 

  4. Akbay EA, Kim J (2018) Autochthonous murine models for the study of smoker and never-smoker associated lung cancers. Transl Lung Cancer Res 7(4):464–486. https://doi.org/10.21037/tlcr.2018.06.04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang Y, Zhao J, Zhang Y, Li K, Li T, Chen X, Zhao S, Zhao S, Liu K, Dong Z (2018) Establishment of lung cancer patient-derived xenograft models and primary cell lines for lung cancer study. J Transl Med 16(1):138. https://doi.org/10.1186/s12967-018-1516-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kellar A, Egan C, Morris D (2015) Preclinical murine models for lung cancer: clinical trial applications. Biomed Res Int 2015:621324. https://doi.org/10.1155/2015/621324

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cancer Genome Atlas Research N (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511(7511):543–550. https://doi.org/10.1038/nature13385

    Article  CAS  Google Scholar 

  8. Coggins CR (2007) An updated review of inhalation studies with cigarette smoke in laboratory animals. Int J Toxicol 26(4):331–338. https://doi.org/10.1080/10915810701490190

    Article  CAS  PubMed  Google Scholar 

  9. Malkinson AM (1989) The genetic basis of susceptibility to lung tumors in mice. Toxicology 54(3):241–271

    Article  CAS  Google Scholar 

  10. Shimkin MB, Stoner GD (1975) Lung tumors in mice: application to carcinogenesis bioassay. Adv Cancer Res 21:1–58

    Article  CAS  Google Scholar 

  11. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, O’Brien M, Rao S, Hotta K, Leiby MA, Lubiniecki GM, Shentu Y, Rangwala R, Brahmer JR, KEYNOTE-024 Investigators (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833. https://doi.org/10.1056/NEJMoa1606774

    Article  CAS  PubMed  Google Scholar 

  12. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135. https://doi.org/10.1056/NEJMoa1504627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Bao Z, Zhang X, Li F, Lai T, Cao C, Chen Z, Li W, Shen H, Ying S (2017) Effectiveness and safety of PD-1/PD-L1 inhibitors in the treatment of solid tumors: a systematic review and meta-analysis. Oncotarget 8(35):59901–59914. https://doi.org/10.18632/oncotarget.18316

  14. Mandel R, Samstein RM, Lee KW, Havel JJ, Wang H et al (2019) Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 364(6439):485–91

    Article  CAS  Google Scholar 

  15. Dupage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature. 482(7385):405–9

    Article  CAS  Google Scholar 

  16. Centers for Disease Control and Prevention (US); National Center for Chronic Disease Prevention and Health Promotion (US); Office on Smoking and Health (US). (2010) How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. Publications and Reports of the Surgeon General, Atlanta (GA)

    Google Scholar 

  17. Hecht SS, Hoffmann D (1988) Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke. Carcinogenesis 9(6):875–884

    Article  CAS  Google Scholar 

  18. Hecht SS (1998) Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol 11(6):559–603. https://doi.org/10.1021/tx980005y

    Article  CAS  PubMed  Google Scholar 

  19. Humans IWGotEoCRt (2007) Smokeless tobacco and some tobacco-specific N-nitrosamines. IARC Monogr Eval Carcinog Risks Hum 89:1–592

    Google Scholar 

  20. Ge GZ, Xu TR, Chen C (2015) Tobacco carcinogen NNK-induced lung cancer animal models and associated carcinogenic mechanisms. Acta Biochim Biophys Sin Shanghai 47(7):477–487. https://doi.org/10.1093/abbs/gmv041

    Article  CAS  PubMed  Google Scholar 

  21. West KA, Brognard J, Clark AS, Linnoila IR, Yang X, Swain SM, Harris C, Belinsky S, Dennis PA (2003) Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J Clin Invest 111(1):81–90. https://doi.org/10.1172/JCI16147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jull BA, Plummer HK 3rd, Schuller HM (2001) Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway, resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells. J Cancer Res Clin Oncol 127(12):707–717

    Article  CAS  Google Scholar 

  23. Schuller HM, Cekanova M (2005) NNK-induced hamster lung adenocarcinomas over-express beta2-adrenergic and EGFR signaling pathways. Lung Cancer 49(1):35–45. https://doi.org/10.1016/j.lungcan.2004.12.012

    Article  PubMed  Google Scholar 

  24. Laag E, Majidi M, Cekanova M, Masi T, Takahashi T, Schuller HM (2006) NNK activates ERK1/2 and CREB/ATF-1 via beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells. Int J Cancer 119(7):1547–1552. https://doi.org/10.1002/ijc.21987

    Article  CAS  PubMed  Google Scholar 

  25. Chen RJ, Chang LW, Lin P, Wang YJ (2011) Epigenetic effects and molecular mechanisms of tumorigenesis induced by cigarette smoke: an overview. J Oncol 2011:654931. https://doi.org/10.1155/2011/654931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siegfried JM, Farooqui M, Rothenberger NJ, Dacic S, Stabile LP (2017) Interaction between the estrogen receptor and fibroblast growth factor receptor pathways in non-small cell lung cancer. Oncotarget 8(15):24063–24076. https://doi.org/10.18632/oncotarget.16030

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stabile LP, Rothstein ME, Cunningham DE, Land SR, Dacic S, Keohavong P, Siegfried JM (2012) Prevention of tobacco carcinogen-induced lung cancer in female mice using antiestrogens. Carcinogenesis 33(11):2181–2189. https://doi.org/10.1093/carcin/bgs260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sivakumar S, Lucas FAS, McDowell TL, Lang W, Xu L, Fujimoto J, Zhang J, Futreal PA, Fukuoka J, Yatabe Y, Dubinett SM, Spira AE, Fowler J, Hawk ET, Wistuba II, Scheet P, Kadara H (2017) Genomic landscape of atypical adenomatous hyperplasia reveals divergent modes to lung adenocarcinoma. Cancer Res 77(22):6119–6130. https://doi.org/10.1158/0008-5472.CAN-17-1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fujimoto J, Kadara H, Men T, van Pelt C, Lotan D, Lotan R (2010) Comparative functional genomics analysis of NNK tobacco-carcinogen induced lung adenocarcinoma development in Gprc5a-knockout mice. PLoS One 5(7):e11847. https://doi.org/10.1371/journal.pone.0011847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di YP (2014) Assessment of pathological and physiological changes in mouse lung through bronchoalveolar lavage. Methods Mol Biol 1105:33–42. https://doi.org/10.1007/978-1-62703-739-6_3

    Article  PubMed  Google Scholar 

  31. Keohavong P, Mady HH, Gao WM, Siegfried JM, Luketich JD, Melhem MF (2001) Topographic analysis of K-ras mutations in histologically normal lung tissues and tumours of lung cancer patients. Br J Cancer 85(2):235–241. https://doi.org/10.1054/bjoc.2001.1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura P. Stabile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rothenberger, N.J., Stabile, L.P. (2020). Induction of Lung Tumors and Mutational Analysis in FVB/N Mice Treated with the Tobacco Carcinogen 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-Butanone. In: Keohavong, P., Singh, K., Gao, W. (eds) Molecular Toxicology Protocols. Methods in Molecular Biology, vol 2102. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0223-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0223-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0222-5

  • Online ISBN: 978-1-0716-0223-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics