Skip to main content

Isolation of Immune Cells from Placental Tissues and Phenotypic and Functional Analysis of MAIT Cells

  • Protocol
  • First Online:
MAIT Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2098))

Abstract

The placenta is an immunological paradox since maternal immune cells infiltrating placental tissues need to be tolerant toward the fetus but still retain immunity against potential infections. This makes the placenta an interesting tissue for studying immunological processes. Mucosal-associated invariant T (MAIT) cells are a subset of T cells that respond to bacterially derived metabolites of riboflavin synthesis. Upon activation, MAIT cells respond by secretion of inflammatory cytokines and by directed killing of infected cells by the use of granzymes and perforin. In this protocol, we describe methods for the isolation of immune cells from the placental intervillous space and adjacent tissues such as the umbilical cord, decidua parietalis, and decidua basalis. We further describe how to stimulate MAIT cells in mixed cell suspensions of mononuclear cells with bacteria, and how to analyze the phenotypic and functional responses with flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kay HH, Nelson DM, Wang Y (2011) The placenta from development to disease. Chichester, West Sussex

    Google Scholar 

  2. Bartmann C, Segerer SE, Rieger L, Kapp M, Sutterlin M, Kammerer U (2014) Quantification of the predominant immune cell populations in decidua throughout human pregnancy. Am J Reprod Immunol (New York, NY : 1989) 71(2):109–119. https://doi.org/10.1111/aji.12185

    Article  CAS  Google Scholar 

  3. Solders M, Gorchs L, Gidlof S, Tiblad E, Lundell AC, Kaipe H (2017) Maternal adaptive immune cells in decidua parietalis display a more activated and coinhibitory phenotype compared to decidua basalis. Stem Cells Int 2017:8010961. https://doi.org/10.1155/2017/8010961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Solders M, Gorchs L, Erkers T, Lundell AC, Nava S, Gidlof S, Tiblad E, Magalhaes I, Kaipe H (2017) MAIT cells accumulate in placental intervillous space and display a highly cytotoxic phenotype upon bacterial stimulation. Sci Rep 7(1):6123. https://doi.org/10.1038/s41598-017-06430-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lashley LE, van der Hoorn ML, van der Mast BJ, Tilburgs T, van der Lee N, van der Keur C, van Beelen E, Roelen DL, Claas FH, Scherjon SA (2011) Changes in cytokine production and composition of peripheral blood leukocytes during pregnancy are not associated with a difference in the proliferative immune response to the fetus. Hum Immunol 72(10):805–811. https://doi.org/10.1016/j.humimm.2011.05.027

    Article  CAS  PubMed  Google Scholar 

  6. Tilburgs T, Scherjon SA, van der Mast BJ, Haasnoot GW, Versteeg VDV-MM, Roelen DL, van Rood JJ, Claas FH (2009) Fetal-maternal HLA-C mismatch is associated with decidual T cell activation and induction of functional T regulatory cells. J Reprod Immunol 82(2):148–157. https://doi.org/10.1016/j.jri.2009.05.003

    Article  CAS  PubMed  Google Scholar 

  7. Apps R, Murphy SP, Fernando R, Gardner L, Ahad T, Moffett A (2009) Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127(1):26–39. https://doi.org/10.1111/j.1365-2567.2008.03019.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Persson G, Melsted WN, Nilsson LL, Hviid TVF (2017) HLA class Ib in pregnancy and pregnancy-related disorders. Immunogenetics 69(8–9):581–595. https://doi.org/10.1007/s00251-017-0988-4

    Article  CAS  PubMed  Google Scholar 

  9. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723. https://doi.org/10.1038/nature11605

    Article  CAS  PubMed  Google Scholar 

  10. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422(6928):164–169. https://doi.org/10.1038/nature01433

    Article  CAS  PubMed  Google Scholar 

  11. Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A, Tschumi A, Lee B, Poidinger M, Zolezzi F, Quagliata L, Sander P, Newell E, Bertoletti A, Terracciano L, De Libero G, Mori L (2014) Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRbeta repertoire. Nat Commun 5:3866. https://doi.org/10.1038/ncomms4866

    Article  CAS  PubMed  Google Scholar 

  12. Dias J, Leeansyah E, Sandberg JK (2017) Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1705759114

    Article  CAS  Google Scholar 

  13. Solders M, Gorchs L, Tiblad E, Gidlof S, Leeansyah E, Dias J, Sandberg JK, Magalhaes I, Lundell AC, Kaipe H (2019) Recruitment of MAIT cells to the intervillous space of the placenta by placenta-derived chemokines. Front Immunol 10:1300. https://doi.org/10.3389/fimmu.2019.01300

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gold MC, Eid T, Smyk-Pearson S, Eberling Y, Swarbrick GM, Langley SM, Streeter PR, Lewinsohn DA, Lewinsohn DM (2013) Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol 6(1):35–44. https://doi.org/10.1038/mi.2012.45

    Article  CAS  PubMed  Google Scholar 

  15. Ostblom A, Adlerberth I, Wold AE, Nowrouzian FL (2011) Pathogenicity island markers, virulence determinants malX and usp, and the capacity of Escherichia coli to persist in infants’ commensal microbiotas. Appl Environ Microbiol 77(7):2303–2308. https://doi.org/10.1128/AEM.02405-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, Kang YH, Walker LJ, Hansen TH, Willberg CB, Klenerman P (2015) MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 8(2):429–440. https://doi.org/10.1038/mi.2014.81

    Article  CAS  PubMed  Google Scholar 

  17. Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, Core M, Sleurs D, Serriari NE, Treiner E, Hivroz C, Sansonetti P, Gougeon ML, Soudais C, Lantz O (2013) MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog 9(10):e1003681. https://doi.org/10.1371/journal.ppat.1003681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8(6):e1000407. https://doi.org/10.1371/journal.pbio.1000407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M, Levy E, Dusseaux M, Meyssonnier V, Premel V, Ngo C, Riteau B, Duban L, Robert D, Huang S, Rottman M, Soudais C, Lantz O (2010) Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 11(8):701–708. https://doi.org/10.1038/ni.1890

    Article  CAS  PubMed  Google Scholar 

  20. Chatila T, Silverman L, Miller R, Geha R (1989) Mechanisms of T cell activation by the calcium ionophore ionomycin. J Immunol 143(4):1283–1289

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H.K. was supported by the Swedish Research Council, the Swedish Childhood Cancer Foundation, the Cancer Society in Stockholm, the Swedish Cancer Foundation, Stockholm County Council, and Karolinska Institutet. MS was supported by Karolinska Institutet and Stockholm County Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Solders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Solders, M., Gorchs, L., Kaipe, H. (2020). Isolation of Immune Cells from Placental Tissues and Phenotypic and Functional Analysis of MAIT Cells. In: Kaipe, H., Magalhaes, I. (eds) MAIT Cells. Methods in Molecular Biology, vol 2098. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0207-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0207-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0206-5

  • Online ISBN: 978-1-0716-0207-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics