Skip to main content

Approaches to Whole-Genome Methylome Analysis in Plants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2093))

Abstract

Cytosine methylation as a reversible chromatin mark has been investigated extensively for its influence on gene silencing and the regulation of its dynamic association–disassociation at specific sites within a eukaryotic genome. With the remarkable reductions in cost and time associated with whole-genome DNA sequence analysis, coupled with the high fidelity of bisulfite-treated DNA sequencing, single nucleotide resolution of cytosine methylation repatterning within even very large genomes is increasingly achievable. What remains a challenge is the analysis of genome-wide methylome datasets and, consequently, a clear understanding of the overall influence of methylation repatterning on gene expression or vice versa. Reported data have sometimes been subject to stringent data filtering methods that can serve to skew downstream biological interpretation. These complications derive from methylome analysis procedures that vary widely in method and parameter setting. DNA methylation as a chromatin feature that influences DNA stability can be dynamic and rapidly responsive to environmental change. Consequently, methods to discriminate background “noise” of the system from biological signal in response to specific perturbation is essential in some types of experiments. We describe numerous aspects of whole-genome bisulfite sequence data that must be contemplated as well as the various steps of methylome data analysis which impact the biological interpretation of the final output.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Holliday R, Pugh J (1975) DNA modification mechanisms and gene activity during development. Science 187(4173):226–232. https://doi.org/10.1126/science.1111098

    Article  CAS  PubMed  Google Scholar 

  2. Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Genome Res 14:9–25. https://doi.org/10.1159/000130315

    Article  CAS  Google Scholar 

  3. Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201. https://doi.org/10.1016/j.cell.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  4. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219. https://doi.org/10.1038/nature06745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536. https://doi.org/10.1016/j.cell.2008.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  7. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489–506

    Article  CAS  PubMed  Google Scholar 

  9. Dowen RH, Pelizzola M, Schmitz RJ et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci 109:E2183–E2191. https://doi.org/10.1073/pnas.1209329109

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crisp PA, Ganguly D, Eichten SR et al (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:e1501340. https://doi.org/10.1126/sciadv.1501340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bej S, Basak J (2017) Abiotic stress induced epigenetic modifications in plants: how much do we know? In: Plant epigenetics, pp 493–512

    Chapter  Google Scholar 

  12. He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21:442–465. https://doi.org/10.1038/cr.2011.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Du J, Johnson LM, Jacobsen SE, Patel DJ (2015) DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 16:519–532. https://doi.org/10.1038/nrm4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chatterjee A, Rodger EJ, Morison IM, et al (2017) Tools and strategies for analysis of genome-wide and gene-specific DNA methylation patterns. In: Methods in molecular biology. Humana Press, New York, pp 249–277

    Google Scholar 

  15. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  CAS  PubMed  Google Scholar 

  16. Jacinto FV, Ballestar E, Esteller M (2008) Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. BioTechniques 44:35–43. https://doi.org/10.2144/000112708

    Article  CAS  PubMed  Google Scholar 

  17. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  18. Krueger F (2016) Trim Galore. In: Babraham Bioinforma. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

  19. Langmead B (2010) Aligning short sequencing reads with bowtie. Curr Protoc Bioinformatics. https://doi.org/10.1002/0471250953.bi1107s32

  20. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for bisulfite-Seq applications. Bioinformatics 27:1571–1572. https://doi.org/10.1093/bioinformatics/btr167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang KYY, Huang YJ, Chen PY (2018) BS-Seeker3: ultrafast pipeline for bisulfite sequencing. BMC Bioinformatics 19:111. https://doi.org/10.1186/s12859-018-2120-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pedersen B, Hsieh TF, Ibarra C, Fischer RL (2011) MethylCoder: software pipeline for bisulte-treated sequences. Bioinformatics 27:2435–2436. https://doi.org/10.1093/bioinformatics/btr394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng H, Conneely KN, Wu H (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42(8):e69. https://doi.org/10.1093/nar/gku154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schultz MD, He Y, Whitaker JW et al (2015) Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523:212–216. https://doi.org/10.1038/nature14465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hansen KD, Langmead B, Irizarry RA (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol 13:R83. https://doi.org/10.1186/gb-2012-13-10-R83

    Article  PubMed  PubMed Central  Google Scholar 

  26. Akalin A, Kormaksson M, Li S et al (2012) MethylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13:R87. https://doi.org/10.1186/gb-2012-13-10-R87

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dolzhenko E, Smith AD (2014) Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments. BMC Bioinformatics 15:215. https://doi.org/10.1186/1471-2105-15-215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lea AJ, Tung J, Zhou X (2015) A flexible, efficient binomial mixed model for identifying differential DNA methylation in bisulfite sequencing data. PLoS Genet 11:e1005650. https://doi.org/10.1371/journal.pgen.1005650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yelagandula R, Stroud H, Holec S et al (2014) The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158:98–109. https://doi.org/10.1016/j.cell.2014.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gouil Q, Baulcombe DC (2016) DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet 12:e1006526. https://doi.org/10.1371/journal.pgen.1006526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stroud H, Greenberg MVC, Feng S et al (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364. https://doi.org/10.1016/j.cell.2012.10.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mlura A, Yonebayashi S, Watanabe K et al (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214. https://doi.org/10.1038/35075612

    Article  CAS  Google Scholar 

  33. Stuart T, Eichten SR, Cahn J et al (2016) Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. elife 5. https://doi.org/10.7554/eLife.20777

  34. Fultz D, Slotkin RK (2017) Exogenous transposable elements circumvent identity-based silencing, permitting the dissection of expression-dependent silencing. Plant Cell 29:360–376. https://doi.org/10.1105/tpc.16.00718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu A, Lepere G, Jay F et al (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci 110:2389–2394. https://doi.org/10.1073/pnas.1211757110

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schmitz RJ, Schultz MD, Urich MA et al (2013) Patterns of population epigenomic diversity. Nature 495:193–198. https://doi.org/10.1038/nature11968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dubin MJ, Zhang P, Meng D et al (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. elife 4:e05255. https://doi.org/10.7554/eLife.05255

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kawakatsu T, Huang S shan C, Jupe F et al (2016) Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:492–506. https://doi.org/10.1016/j.cell.2016.06.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ganguly DR, Crisp PA, Eichten SR, Pogson BJ (2017) The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol 175:1893–1912. https://doi.org/10.1104/pp.17.00744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawakatsu T, Nery JR, Castanon R, Ecker JR (2017) Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol 18:171. https://doi.org/10.1186/s13059-017-1251-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaplowitz PB, Jennings SS (1987) Effect of growth hormone therapy on caloric intake in children with growth hormone deficiency. Nutr Res 7:901–906. https://doi.org/10.1016/S0271-5317(87)80158-6

    Article  Google Scholar 

  42. Mirouze M, Vitte C (2014) Transposable elements, a treasure trove to decipher epigenetic variation: insights from Arabidopsis and crop epigenomes. J Exp Bot 65:2801–2812

    Article  CAS  PubMed  Google Scholar 

  43. Moarefi AH, Chédin F (2011) ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation. J Mol Biol 409:758–772. https://doi.org/10.1016/j.jmb.2011.04.050

    Article  CAS  PubMed  Google Scholar 

  44. Bewick AJ, Schmitz RJ (2017) Gene body DNA methylation in plants. Curr Opin Plant Biol 36:103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang H, Chang F, You C et al (2015) Whole-genome DNA methylation patterns and complex associations with gene structure and expression during flower development in Arabidopsis. Plant J 81:268–281. https://doi.org/10.1111/tpj.12726

    Article  CAS  PubMed  Google Scholar 

  46. Schmid MW, Heichinger C, Coman Schmid D et al (2018) Contribution of epigenetic variation to adaptation in Arabidopsis. Nat Commun 9:4446. https://doi.org/10.1038/s41467-018-06932-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Walker J, Gao H, Zhang J et al (2018) Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nat Genet 50:130–137. https://doi.org/10.1038/s41588-017-0008-5

    Article  CAS  PubMed  Google Scholar 

  48. Derreumaux S, Chaoui M, Tevanian G, Fermandjian S (2001) Impact of CpG methylation on structure, dynamics and solvation of cAMP DNA responsive element. Nucleic Acids Res 29:2314–2326. https://doi.org/10.1093/nar/29.11.2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Severin PMD, Zou X, Gaub HE, Schulten K (2011) Cytosine methylation alters DNA mechanical properties. Nucleic Acids Res 39:8740–8751. https://doi.org/10.1093/nar/gkr578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pérez A, Castellazzi CL, Battistini F et al (2012) Impact of methylation on the physical properties of DNA. Biophys J 102:2140–2148. https://doi.org/10.1016/j.bpj.2012.03.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ngo TTM, Yoo J, Dai Q et al (2016) Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability. Nat Commun 7. https://doi.org/10.1038/ncomms10813

  52. Roeler K, Takuno S, Gaut BS (2016) CG methylation covaries with differential gene expression between leaf and floral bud tissues of Brachypodium distachyon. PLoS One 11:e0150002. https://doi.org/10.1371/journal.pone.0150002

    Article  CAS  Google Scholar 

  53. Takuno S, Gaut BS (2012) Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol Biol Evol 29:219–227. https://doi.org/10.1093/molbev/msr188

    Article  CAS  PubMed  Google Scholar 

  54. Bewick AJ, Ji L, Niederhuth CE et al (2016) On the origin and evolutionary consequences of gene body DNA methylation. Proc Natl Acad Sci 113:9111–9116. https://doi.org/10.1073/pnas.1604666113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang X, Zhang Z, Fu T et al (2017) Gene-body CG methylation and divergent expression of duplicate genes in rice. Sci Rep 7:2675. https://doi.org/10.1038/s41598-017-02860-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zilberman D (2017) An evolutionary case for functional gene body methylation in plants and animals. Genome Biol 18:87. https://doi.org/10.1186/s13059-017-1230-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xing M-Q, Zhang Y-J, Zhou S-R et al (2015) Global analysis reveals the crucial roles of DNA methylation during Rice seed development. Plant Physiol 168:1417–1432. https://doi.org/10.1104/pp.15.00414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhong S, Fei Z, Chen YR et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31:154–159. https://doi.org/10.1038/nbt.2462

    Article  CAS  PubMed  Google Scholar 

  59. Lang Z, Wang Y, Tang K et al (2017) Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc Natl Acad Sci 114:E4511–E4519. https://doi.org/10.1073/pnas.1705233114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Candaele J, Demuynck K, Mosoti D et al (2014) Differential methylation during maize leaf growth targets developmentally regulated genes. Plant Physiol 164:1350–1364. https://doi.org/10.1104/pp.113.233312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Song Q, Zhang T, Stelly DM, Chen ZJ (2017) Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol 18:99. https://doi.org/10.1186/s13059-017-1229-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matzke MA, Kanno T, Matzke AJM (2015) RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol 66:243–267. https://doi.org/10.1146/annurev-arplant-043014-114633

    Article  CAS  PubMed  Google Scholar 

  64. Hossain MS, Kawakatsu T, Do KK et al (2017) Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol 214:808–819. https://doi.org/10.1111/nph.14421

    Article  CAS  PubMed  Google Scholar 

  65. Lauria M, Echegoyen-Nava RA, Rodríguez-Ríos D et al (2017) Inter-individual variation in DNA methylation is largely restricted to tissue-specific differentially methylated regions in maize. BMC Plant Biol 17:52. https://doi.org/10.1186/s12870-017-0997-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turco GM, Kajala K, Kunde-Ramamoorthy G et al (2017) DNA methylation and gene expression regulation associated with vascularization in Sorghum bicolor. New Phytol 214:1213. https://doi.org/10.1111/nph.14448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johannes F, Porcher E, Teixeira FK et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5(6):e1000530. https://doi.org/10.1371/journal.pgen.1000530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang DL, Zhang G, Tang K et al (2016) Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Res 26:66–82. https://doi.org/10.1038/cr.2015.145

    Article  CAS  PubMed  Google Scholar 

  69. Scheid OM, Probst AV, Afsar K, Paszkowski J (2002) Two regulatory levels of transcriptional gene silencing in Arabidopsis. Proc Natl Acad Sci 99:13659–13662. https://doi.org/10.1073/pnas.202380499

    Article  CAS  PubMed Central  Google Scholar 

  70. Li D, Palanca AMS, Won SY et al (2017) The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status. elife 6:e19893. https://doi.org/10.7554/eLife.19893

    Article  PubMed  PubMed Central  Google Scholar 

  71. Williams BP, Pignatta D, Henikoff S, Gehring M (2015) Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. PLoS Genet 11:e1005142. https://doi.org/10.1371/journal.pgen.1005142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wibowo A, Becker C, Marconi G et al (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. elife 5:e13546. https://doi.org/10.7554/eLife.13546

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhu H, Wang G, Qian J (2016) Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 17:551–565. https://doi.org/10.1038/nrg.2016.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Neri F, Rapelli S, Krepelova A et al (2017) Intragenic DNA methylation prevents spurious transcription initiation. Nature 543:72–77. https://doi.org/10.1038/nature21373

    Article  CAS  PubMed  Google Scholar 

  75. Wang X, Hu L, Wang X et al (2016) DNA methylation affects gene alternative splicing in plants: an example from rice. Mol Plant 9:305–307

    Article  CAS  PubMed  Google Scholar 

  76. Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560. https://doi.org/10.1038/nature731

    Article  CAS  PubMed  Google Scholar 

  77. Wollmann H, Stroud H, Yelagandula R et al (2017) The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome Biol 18:94. https://doi.org/10.1186/s13059-017-1221-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Luo M, Yu CW, Chen FF et al (2012) Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genet 8:e1003114. https://doi.org/10.1371/journal.pgen.1003114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim JM, To TK, Seki M (2012) An epigenetic integrator: new insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6. Plant Cell Physiol 53:794–800

    Article  CAS  PubMed  Google Scholar 

  80. Iwasaki M, Takahashi H, Iwakawa H et al (2013) Dual regulation of ETTIN (ARF3) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in Arabidopsis. Development 140:1958–1969. https://doi.org/10.1242/dev.085365

    Article  CAS  PubMed  Google Scholar 

  81. Blevins T, Pontvianne F, Cocklin R et al (2014) A two-step process for epigenetic inheritance in Arabidopsis. Mol Cell 54:30–42. https://doi.org/10.1016/j.molcel.2014.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu Y-Z, de la Rosa Santamaria R, Virdi KS et al (2012) The chloroplast triggers developmental reprogramming when MUTS HOMOLOG1 is suppressed in plants. Plant Physiol 159:710–720. https://doi.org/10.1104/pp.112.196055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Virdi KS, Laurie JD, Xu YZ et al (2015) Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nat Commun 6:6386. https://doi.org/10.1038/ncomms7386

    Article  CAS  PubMed  Google Scholar 

  84. Shao MR, Kumar Kenchanmane Raju S, Laurie JD et al (2017) Stress-responsive pathways and small RNA changes distinguish variable developmental phenotypes caused by MSH1 loss. BMC Plant Biol 17:47. https://doi.org/10.1186/s12870-017-0996-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jenkinson G, Pujadas E, Goutsias J, Feinberg AP (2017) Potential energy landscapes identify the information-theoretic nature of the epigenome. Nat Genet 49:719–729. https://doi.org/10.1038/ng.3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jenkinson G, Abante J, Feinberg AP, Goutsias J (2018) An information-theoretic approach to the modeling and analysis of whole-genome bisulfite sequencing data. BMC Bioinformatics 19:87. https://doi.org/10.1186/s12859-018-2086-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hofmeister BT, Lee K, Rohr NA et al (2017) Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol 18:155. https://doi.org/10.1186/s13059-017-1288-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Taudt A, Roquis D, Vidalis A et al (2018) METHimpute: imputation-guided construction of complete methylomes from WGBS data. BMC Genomics 19:444. https://doi.org/10.1186/s12864-018-4641-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tran H, Zhu H, Wu X et al (2018) Identification of differentially methylated sites with weak methylation effects. Genes (Basel) 9. https://doi.org/10.3390/genes9020075

    Article  PubMed Central  Google Scholar 

  90. Srivastava A, Karpievitch YV, Eichten SR et al (2019) HOME: a histogram based machine learning approach for effective identification of differentially methylated regions 2. 20(1):253. https://doi.org/10.1101/228221

  91. Sanchez R, Yang X, Kundariya H et al (2018) Enhancing resolution of natural methylome reprogramming behavior in plants. bioRxiv:252106. https://doi.org/10.1101/252106

  92. Becker C, Hagmann J, Müller J et al (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249. https://doi.org/10.1038/nature10555

    Article  CAS  PubMed  Google Scholar 

  93. Schmitz RJ, Schultz MD, Lewsey MG et al (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373. https://doi.org/10.1126/science.1212959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sanchez R, Mackenzie SA (2016) Genome-wide discriminatory information patterns of cytosine DNA methylation. Int J Mol Sci 17(6):938. https://doi.org/10.3390/ijms17060938

    Article  CAS  PubMed Central  Google Scholar 

  95. Sanchez R, Mackenzie SA (2016) Information thermodynamics of cytosine DNA methylation. PLoS One 11:e0150427. https://doi.org/10.1371/journal.pone.0150427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang X, Kundariya H, Xu Y-Z et al (2015) MutS HOMOLOG1-derived epigenetic breeding potential in tomato. Plant Physiol 168:222–232. https://doi.org/10.1104/pp.15.00075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Raju SKK, Shao MR, Sanchez R et al (2018) An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J 16:1836–1847. https://doi.org/10.1111/pbi.12919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reinders J, Wulff BBH, Mirouze M et al (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23:939–950. https://doi.org/10.1101/gad.524609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lang-Mladek C, Popova O, Kiok K et al (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602. https://doi.org/10.1093/mp/ssq014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Uller T, English S, Pen I (2015) When is incomplete epigenetic resetting in germ cells favoured by natural selection? Proc R Soc B Biol Sci 282:1–8. https://doi.org/10.1098/rspb.2015.0682

    Article  Google Scholar 

  101. Quadrana L, Colot V (2016) Plant transgenerational epigenetics. Annu Rev Genet 50:467–491. https://doi.org/10.1146/annurev-genet-120215-035254

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally A. Mackenzie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, X., Mackenzie, S.A. (2020). Approaches to Whole-Genome Methylome Analysis in Plants. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics . Methods in Molecular Biology, vol 2093. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0179-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0179-2_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0178-5

  • Online ISBN: 978-1-0716-0179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics