Skip to main content

Enalos Cloud Platform: Nanoinformatics and Cheminformatics Tools

  • Protocol
  • First Online:
Ecotoxicological QSARs

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

In this chapter, we present and discuss Enalos Cloud Platform designed and developed by NovaMechanics Ltd., as an easy-to-use portal to address a variety of challenges arising in the fields of cheminformatics and nanoinformatics. Enalos Cloud Platform also hosts predictive models as web services that can contribute to different aspects of material design and development, drug discovery, virtual screening of chemical substances, nanosafety, and the development of safe-by-design (nano)materials. All models included are developed and validated according to the OECD principles. The web services’ interface is carefully designed with the aim of being simple and user-friendly, to allow also users with no informatics background to easily use the models and benefit from the produced predictions and results. At the end of the chapter, we aspire that readers will perceive the functionalities and the efficiency of the available web services and how these could be integrated in drug discovery or material design projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willett P (2002) Chemistry plans a structural overhaul The rising tide of data being generated by high-throughput. Nature 419:4–7

    Google Scholar 

  2. Melagraki G, Afantitis A, Sarimveis H et al (2006) A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri. Mol Divers 10:213–221

    Article  CAS  Google Scholar 

  3. Hong H, Xie Q, Ge W et al (2008) Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48:1337–1344

    Article  CAS  Google Scholar 

  4. Mauri A, Consonni V, Pavan M et al (2006) Dragon software: an easy approach to molecular descriptor calculations. Match 56:237–248

    CAS  Google Scholar 

  5. Leach AR, Gillet VJ (2007) An introduction to chemoinformatics. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  6. Melagraki G, Afantitis A, Sarimveis H et al (2010) In silico exploration for identifying structure-activity relationship of MEK inhibition and oral bioavailability for isothiazole derivatives. Chem Biol Drug Des 76:397

    Article  CAS  Google Scholar 

  7. Tetko IV, Maran U, Tropsha A (2017) Public (Q)SAR services, integrated modeling environments, and model repositories on the web: state of the art and perspectives for future development. Mol Inf 36:1–14

    Article  Google Scholar 

  8. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29:476–488

    Article  CAS  Google Scholar 

  9. Gajewicz A, Rasulev B, Dinadayalane TC et al (2012) Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 64:1663–1693

    Article  CAS  Google Scholar 

  10. Winkler DA, Mombelli E, Pietroiusti A, et al (2013) Applying quantitative structure – activity relationship approaches to nanotoxicology: current status and future potential. https://doi.org/10.1016/j.tox.2012.11.005

    Article  CAS  Google Scholar 

  11. Gajewicz A, Jagiello K, Cronin MTD et al (2017) Addressing a bottle neck for regulation of nanomaterials: quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available. Environ Sci Nano 4:346–358

    Article  CAS  Google Scholar 

  12. Varsou D-D, Afantitis A, Melagraki G, et al (2019) Read-across predictions of nanoparticle hazard endpoints: a mathematical optimization approach. Nanoscale Adv 1:3485–3498

    Article  CAS  Google Scholar 

  13. ECHA (2017) Appendix R. 6-1: recommendations for nanomaterials applicable to the guidance on QSARs and grouping 29

    Google Scholar 

  14. Schultz TW, Amcoff P, Berggren E et al (2015) A strategy for structuring and reporting a read-across prediction of toxicity. Regul Toxicol Pharmacol 72:586–601

    Article  CAS  Google Scholar 

  15. Varsou D-D, Melagraki G, Sarimveis H et al (2017) MouseTox: an online toxicity assessment tool for small molecules through Enalos Cloud platform. Food Chem Toxicol 110:83–93

    Article  CAS  Google Scholar 

  16. Varsou D-D, Afantitis A, Tsoumanis A et al (2019) A safe-by-design tool for functionalised nanomaterials through the Enalos Nanoinformatics Cloud platform. Nanoscale Adv 1:706

    Article  Google Scholar 

  17. Braga RC, Alves VM, Muratov EN et al (2017) Pred-skin: a fast and reliable web application to assess skin sensitization effect of chemicals. J Chem Inf Model 57:1013–1017

    Article  CAS  Google Scholar 

  18. Melagraki G, Afantitis A (2014) Enalos InSilicoNano platform: an online decision support tool for the design and virtual screening of nanoparticles. RSC Adv 4:50713–50725

    Article  CAS  Google Scholar 

  19. Afantitis A, Melagraki G, Tsoumanis A et al (2018) A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints. Nanotoxicology 12:1148

    Article  CAS  Google Scholar 

  20. KNIME KNIME Analytics Platform. https://www.knime.org/knime-analytics-platform

  21. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ Second Edition. Biophotonics Int 11:36–42

    Google Scholar 

  22. Leonis G, Melagraki G, Afantitis A (2016) Open Source Chemoinformatics Software including KNIME Analytics Platform among a multitude. In: Leszczynski J (ed) Handbook of computational chemistry. Springer, Dordrecht

    Google Scholar 

  23. The University of Waikato Weka 3: machine learning software in Java. https://www.cs.waikato.ac.nz/ml/weka/index.html

  24. The R Project for statistical computing. https://www.r-project.org/

  25. National Center for Biotechnology Information PubChem BioAssay Database, AID=651744. https://pubchem.ncbi.nlm.nih.gov/bioassay/651744

  26. World Health Organisation WHO Chagas disease (American trypanosomiasis) Factsheet. http://www.who.int/mediacentre/factsheets/fs340/en/

  27. U.S. Foof and Drug Administration, Mold2-Free software for fast-calculating descriptors from a two-dimensional chemical structure that is suitable for small and large datasets. https://www.fda.gov/science-research/bioinformatics-tools/mold2

  28. Witten IH, Frank E, Hall MA (2011) Data mining practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann Publishers, Burlington

    Google Scholar 

  29. Mech A, Rasmussen K, Jantunen P et al (2019) Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation. Nanotoxicology 13:119–141

    Article  CAS  Google Scholar 

  30. Oomen AG, Bleeker EAJ, Bos PMJ et al (2015) Grouping and read-across approaches for risk assessment of nanomaterials. Int J Environ Res Public Health 12:13415–13434

    Article  Google Scholar 

  31. Lamon L, Aschberger K, Asturiol D et al (2019) Grouping of nanomaterials to read-across hazard endpoints: a review. Nanotoxicology 13:100–118

    Article  CAS  Google Scholar 

  32. Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, United States

    Google Scholar 

  33. Huluban R (2016) Practical guide-How to use and report (Q)SARs Practical Guide – How to use and report (Q)SARs, version 3.1. European Chemicals Agency, Helsinki

    Google Scholar 

  34. Zhou H, Mu Q, Gao N et al (2008) A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett 8:859–865

    Article  CAS  Google Scholar 

  35. Chau YT, Yap CW (2012) Quantitative nanostructure-activity relationship modelling of nanoparticles. RSC Adv 2:8489–8496

    Article  CAS  Google Scholar 

  36. Toropov AA, Toropova AP, Puzyn T et al (2013) QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere 92:31–37

    Article  CAS  Google Scholar 

  37. Kar S, Gajewicz A, Puzyn T et al (2014) Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Toxicol In Vitro 28:600–606

    Article  CAS  Google Scholar 

  38. Roy K, Ambure P (2016) The “double cross-validation” software tool for MLR QSAR model development. Chemom Intel Lab Syst, Elsevier, 159:108

    Article  CAS  Google Scholar 

  39. Vilanova O, Mittag JJ, Kelly PM et al (2016) Understanding the kinetics of protein-nanoparticle corona formation. ACS Nano 10:10842–10850

    Article  CAS  Google Scholar 

  40. Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055

    Article  CAS  Google Scholar 

  41. Walkey CD, Olsen JB, Song F et al (2014) Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8:2439–2455

    Article  CAS  Google Scholar 

  42. Varsou D-D, Tsiliki G, Nymark P et al (2018) toxFlow: a web-based application for read-across toxicity prediction using omics and physicochemical data. J Chem Inf Model 58:543–549

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Cyprus Research Promotion Foundation, the Republic of Cyprus & the European Union under Grant agreement KOINA/ERASysAPP-ERA.NET/1113 and the European Union’s Horizon 2020 research and innovation programme under grant agreements No 691095 (NANOGENTOOLS) & 731032 (NanoCommons).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antreas Afantitis or Georgia Melagraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Varsou, DD., Tsoumanis, A., Afantitis, A., Melagraki, G. (2020). Enalos Cloud Platform: Nanoinformatics and Cheminformatics Tools. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics