Skip to main content

QSARs and Read-Across for Thiochemicals: A Case Study of Using Alternative Information for REACH Registrations

  • Protocol
  • First Online:
Ecotoxicological QSARs

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

A case study on acute aquatic toxicity of thiochemicals shows the possibilities and limitations of filling data gaps with alternative information in accordance with the requirements of REACH. It is the objective of this study to extract as much information as possible from available experimental studies with fish, daphnia, and algae to estimate required data by QSARs and read-across.

Thiochemicals are considered to be toxic with an unspecific reactive mode of action (MoA) causing so-called excess toxicity, i.e., the effects are much higher than estimated from log KOW-dependent baseline QSARs. Differences in toxicity between groups of thiochemicals, for example, thioglycolates or mercaptopropionates, are thought to be due to differences in reactivity of the respective sulfur moiety, i.e., toxicodynamic differences. Thiochemicals within each group are different with regard to partitioning between biophases related to, e.g., increasing aliphatic chain length, i.e., toxicokinetic differences.

Due to the toxicodynamic and toxicokinetic differences, QSARs and read-across are limited to thiochemicals within the same group. Since the database per group of thiochemicals is too small to derive scientifically valid QSARs, most of the 36 data gaps for 16 thiochemicals to be registered by 2018 were closed by read-across. Testing strategies to fill remaining data gaps include tests with algae (six substances) and daphnia (six substances). Only for two substances, experimental (limit) fish studies are recommended. Overall, a substantial (>60%) reduction of tests by predictive in silico methods is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    REACH: EU regulation on registration, evaluation, authorization, and restriction of chemicals [1]

  2. 2.

    The concept of functional similarity can support the MoA classification of chemicals by combining toxicological knowledge (which toxicity pathways can happen in which species under which exposure conditions) with chemical expertise (which parts of the chemical structures and physicochemical properties are involved in which interactions) [16,17,18,19].

  3. 3.

    OECD criteria for the scientific validity of QSAR models [30]: (1) a defined endpoint; (2) an unambiguous algorithm; (3) a defined domain of applicability; (4) appropriate measures of goodness of fit, robustness, and predictivity; and (5) a mechanistic interpretation, if possible

  4. 4.

    Note that QSARs are always performed on a molar basis.

  5. 5.

    https://aopwiki.org/

  6. 6.

    TMPMP: Trimethylolpropane trimercaptopropionate, CAS 33007-83-9

  7. 7.

    TEMPIC: Tris[2-(3-mercaptopropionyloxy)ethyl]isocyanurate, CAS 36196-44-8

  8. 8.

    PETMA: Pentaerythritol tetrakis(mercaptoacetate), CAS 10193-99-4

  9. 9.

    GDMP: Glycol di(3-mercaptopropionate), CAS 22504-50-3

References

  1. European Commission (2006) REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. European Commission, Brussels

    Google Scholar 

  2. ECHA (2016) Practical guide How to use alternatives to animal testing to fulfil your information requirements for REACH registration. ECHA, Helsinki

    Google Scholar 

  3. ECHA (2017) Read-across assessment framework (RAAF). ECHA, Helsinki

    Google Scholar 

  4. European Commission (2009) Regulation (EC) 1272/2008 on classification, labelling and packaging of substances and mixtures (CLP) from January 20, 2009. European Commission, Brussels

    Google Scholar 

  5. Ahlers J, Stock F, Werschkun B (2008) Integrated testing and intelligent assessment – new challenges under REACH. Environ Sci Pollut Res Int 15:565–572

    Article  PubMed  Google Scholar 

  6. EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Benfenati E, Chaudhry QM, Craig P, Frampton G, Greiner M, Hart A, Hogstrand C, Lambre C, Luttik R, Makowski D, Siani A, Wahlstroem H, Aguilera J, Dorne JL, Dumont AF, Hempen M, Martínez SV, Martino L, Smeraldi C, Terron A, Georgiadis N, Younes M (2017) Guidance on the use of the weight of evidence approach in scientific assessments. EFSA J 15(8):e04971. https://doi.org/10.2903/j.efsa.2017.4971

    Article  PubMed Central  Google Scholar 

  7. Rovida C, Alépée N, Api AM, Basketter DA, Bois FY, Caloni F, Corsini E, Daneshian M, Eskes C, Ezendam J, Fuchs H, Hayden P, Hegele-Hartung C, Hoffmann S, Hubesch B, Jacobs MN, Jaworska J, Kleensang A, Kleinstreuer N, Lalko J, Landsiedel R, Lebreux F, Luechtefeld T, Locatelli M, Mehling A, Natsch A, Pitchford JW, Prater D, Prieto P, Schepky A, Schüürmann G, Smirnova L, Toole C, van Vliet E, Weisensee D, Hartung T (2015) Integrated Testing Strategies (ITS) for safety assessment. ALTEX 32(1):25–40

    Article  PubMed  Google Scholar 

  8. Gabbert S, Benighaus C (2012) Quo vadis integrated testing strategies? Experiences and observations from the work floor. J Risk Res 15(6):583–599. https://doi.org/10.1080/13669877.2011.646291

    Article  Google Scholar 

  9. Jaworska JS, Gabbert S, Aldenberg T (2010) Towards optimization of chemical testing under REACH: a Bayesian network approach to Integrated Testing Strategies. Regul Toxicol Pharmacol 57:157–167

    Article  CAS  PubMed  Google Scholar 

  10. Lombardo A, Roncaglioni A, Benfenati E, Nendza M, Segner H, Jeram S, Paunée E, Schüürmann G (2014) Optimizing the aquatic toxicity assessment under REACH through an integrated testing strategy (ITS). Environ Res 135:156–164

    Article  CAS  PubMed  Google Scholar 

  11. ECHA (2017) Guidance on information requirements and chemical safety assessment Chapter R.7b: Endpoint specific guidance. ECHA, Helsinki

    Google Scholar 

  12. Young D, Martin T, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct? QSAR Combi Sci 27:1337–1345

    Article  CAS  Google Scholar 

  13. Ahlers J, Nendza M, Schwartz D (2019) Environmental hazard and risk assessment of thiochemicals. Application of integrated testing and intelligent assessment strategies (ITS) to fulfil the REACH requirements for aquatic toxicity. Chemosphere 214:480–490. https://doi.org/10.1016/j.chemosphere.2018.09.082

    Article  CAS  PubMed  Google Scholar 

  14. Rücker C, Mahmoud WMM, Schwartz D, Kümmerer K (2018) Biodegradation tests of mercaptocarboxylic acids, their esters, related divalent sulfur compounds and mercaptans. Environ Sci Pollut Res 25:18393–18411. https://doi.org/10.1007/s11356-018-1812-x

    Article  CAS  Google Scholar 

  15. Klimisch HJ, Andreae E, Tillmann U (1997) A systematic approach for evaluating the quality of experimental and ecotoxicological data. Regul Toxicol Pharmacol 25:1–5

    Article  CAS  PubMed  Google Scholar 

  16. Nendza M, Müller M, Wenzel A (2014) Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicity. SAR QSAR Environ Res 25(5):393–405. https://doi.org/10.1080/1062936X.2014.907205

    Article  CAS  PubMed  Google Scholar 

  17. Nendza M, Wenzel A (2006) Discriminating toxicant classes by mode of action: 1. (Eco)toxicity profiles. Environ Sci Pollut Res Int 13:192–203

    Article  CAS  PubMed  Google Scholar 

  18. Nendza M, Müller M (2000) Discriminating toxicant classes by mode of action: 2. Physico-chemical descriptors. Quant Struct-Act Relat 19:581–598

    Article  CAS  Google Scholar 

  19. Nendza M, Müller M, Wenzel A (2017) Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies. Environ Sci: Processes Impacts 19(3):429–437. https://doi.org/10.1039/C6EM00600K

    Article  CAS  Google Scholar 

  20. Shigeoka T, Sato Y, Takeda Y, Yoshida K, Yamauchi F (1988) Acute toxicity of chlorophenols to green algae, Selenastrum capricornutum and Chlorella vulgaris, and quantitative structure-activity relationships. Environ Toxicol Chem 7:847–854

    Article  CAS  Google Scholar 

  21. Hermens JLM, Canton H, Janssen P, de Jong R (1984) Quantitative structure-activity relationships and toxicity studies of mixtures of chemicals with anaesthetic potency: acute lethal and sublethal toxicity to Daphnia magna. Aquat Toxicol 5:143–154

    Article  CAS  Google Scholar 

  22. Deneer JW, van Leeuwen CJ, Maas-Diepeveen JL, Hermes JLM (1989) QSAR study of the toxicity of nitrobenzene derivatives towards Daphnia magna, Chlorella pyrenoidosa and Photobacterium phosphoreum. Aquat Toxicol 15:83–98

    Article  CAS  Google Scholar 

  23. Könemann H (1981) Quantitative structure-activity relationships in fish toxicity studies. Part I: relationship for 50 industrial pollutants. Toxicology 19:209–221

    Article  PubMed  Google Scholar 

  24. Nendza M, Russom CL (1991) QSAR modeling of the ERL-D fathead minnow acute toxicity database. Xenobiotica 21:147–170

    Article  CAS  PubMed  Google Scholar 

  25. Royal Society of Chemistry (2018) ChemSpider. http://www.chemspider.com

  26. US EPA (2012) KOWWIN v1.68 from EPISuite, Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, D.C. https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface

  27. US EPA (2012) T.E.S.T. v4.1 http://www.epa.gov/nrmrl/std/qsar/qsar.html

  28. ChemProp (2019) http://www.ufz.de/ecochem/chemprop

  29. Nendza M, Gabbert S, Kühne R, Lombardo A, Roncaglioni A, Benfenati E, Benigni R, Bossa C, Strempel S, Scheringer M, Fernández A, Rallo R, Giralt F, Dimitrov S, Mekenyan O, Bringezu F, Schüürmann G (2013) A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH. Regul Toxicol Pharmacol 66(3):301–314

    Article  PubMed  Google Scholar 

  30. OECD (2007) Guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models, vol OECD Environment Health and Safety Publications, Series on testing and assessment, vol 69. OECD, Paris

    Google Scholar 

  31. JRC QSAR Model Database. https://qsardb.jrc.ec.europa.eu/qmrf/

  32. Ruusmann V, Sild S, Maran U (2015) QSAR DataBank repository: open and linked qualitative and quantitative structure–activity relationship models. J Cheminform 7(1):32. https://doi.org/10.1186/s13321-015-0082-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. VEGAHUB. https://www.vegahub.eu/

  34. Chemistry Dashboard. https://comptox.epa.gov/dashboard/about

  35. Registered substances (2019) https://echa.europa.eu/information-on-chemicals/registered-substances

  36. QSAR Toolbox version 4.3 (2019) http://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm

  37. ECOTOX Knowledgebase (2019) https://cfpub.epa.gov/ecotox/

  38. eChemPortal (2019) https://www.echemportal.org/echemportal/index.action

  39. Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz GY, Niemela J, Mekenyan OG (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45:839–849

    Article  CAS  PubMed  Google Scholar 

  40. Kühne R, Ebert RU, Schüürmann G (2009) Chemical domain of QSAR models from atom-centered fragments. J Chem Inf Model 49:2660–2669

    Article  PubMed  Google Scholar 

  41. Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DT, van de Sandt JJM, Tong W, Veith GD, Yang C (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. ATLA 33:155–173

    CAS  PubMed  Google Scholar 

  42. Jaworska JS, Nikolova-Jeliazkova N, Aldenberg T (2005) QSAR applicability domain estimation by projection of the training set in descriptor space: a review. ATLA 33:445–459

    CAS  PubMed  Google Scholar 

  43. Gabbert S, Weikard HP (2013) Sequential testing of chemicals when costs matter: a value-of-information approach. Human Ecol Risk Assess 19(4):1067–1088

    Article  CAS  Google Scholar 

  44. OECD (2019) Guidance document on aqueous-phase aquatic toxicity testing of difficult test substances, Series on testing and assessment. OECD Publishing, Paris

    Google Scholar 

  45. Ahlers J, Riedhammer C, Vogliano M, Ebert R-U, Kühne R, Schüürmann G (2006) Acute to chronic ratios in aquatic toxicity—variation across trophic levels and relationship with chemical structure. Environ Toxicol Chem 25(11):2937–2945. https://doi.org/10.1897/05-701R.1

    Article  CAS  PubMed  Google Scholar 

  46. Nendza M, Wenzel A, Müller M, Lewin G, Simetska N, Stock F, Arning J (2016) Screening for potential endocrine disruptors in fish: evidence from structural alerts and in vitro and in vivo toxicological assays. Environ Sci Eur 28(1):26. https://doi.org/10.1186/s12302-016-0094-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Nendza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nendza, M., Ahlers, J., Schwartz, D. (2020). QSARs and Read-Across for Thiochemicals: A Case Study of Using Alternative Information for REACH Registrations. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics