Skip to main content

CRISPR/Cas9-Mediated Gene Editing of the Jasmonate Biosynthesis OsAOC Gene in Rice

  • Protocol
  • First Online:
Jasmonate in Plant Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2085))

Abstract

The function of Jasmonate (JA) is well documented in different plant physiological processes as well as in the interactions with their environment. Mutants impaired in JA production and/or signaling are useful materials to study the function of this phytohormone. Genes involved in the JA biosynthesis pathway in rice have been described, but few mutants deficient in JA production and signaling have been identified. Moreover, these mutants are mostly generated through random mutagenesis approaches, such as irradiation, EMS treatment, or T-DNA insertion, and potentially harbor undesired mutations that could affect other biological processes. The CRISPR/Cas9 system is a precise and efficient genome editing tool that creates DNA modification at specific loci and limit undesired mutations.

In this chapter, we describe a procedure to generate new JA-deficient mutant using CRISPR/Cas9 system in rice. The Allene Oxide Cyclase (OsAOC) gene is targeted since it is a single copy gene in the JA biosynthesis pathway in rice. The widely used variety Oryza sativa japonica Kitaake has been chosen due to its short life cycle and its ease of genetic transformation. This protocol describes the selection of the 20-nt target sequence, construction of the binary vector, and strategy for selecting the T-DNA-free mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riemann M, Haga K, Shimizu T, Okada K, Ando S, Mochizuki S, Nishizawa Y, Yamanouchi U, Nick P, Yano M et al (2013) Identification of rice Allene oxide Cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J 74:226–238

    Article  CAS  Google Scholar 

  2. Cai Q, Yuan Z, Chen M, Yin C, Luo Z, Zhao X, Liang W, Hu J, Zhang D (2014) Jasmonic acid regulates spikelet development in rice. Nat Commun 5:3476

    Article  Google Scholar 

  3. Liao L, Shi CH, Zeng DD, Jin XL, Wu JG (2015) Morphogenesis and molecular basis on the unclosed glumes, a novel mutation related to the floral organ of rice. Plant Mol Biol Rep 33:480–489

    Article  CAS  Google Scholar 

  4. Fang C, Zhang H, Wan J, Wu Y, Li K, Jin C, Chen W, Wang S, Wang W, Zhang H et al (2016) Control of leaf senescence by an MeOH-jasmonates cascade that is epigenetically regulated by OsSRT1 in rice. Mol Plant 9:1366–1378

    Article  CAS  Google Scholar 

  5. Svyatyna K, Riemann M (2012) Light-dependent regulation of the jasmonate pathway. Protoplasma 249(Suppl 2):S137–S145

    Article  Google Scholar 

  6. Yamada S, Kano A, Tamaoki D, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2012) Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant Cell Physiol 53:2060–2072

    Article  CAS  Google Scholar 

  7. Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157:305–316

    Article  CAS  Google Scholar 

  8. Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B, Lou Y (2009) Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J 60:638–648

    Article  CAS  Google Scholar 

  9. Li R, Afsheen S, Xin Z, Han X, Lou Y (2013) OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. Physiol Plant 147:340–351

    Article  CAS  Google Scholar 

  10. Kobayashi T, Itai RN, Senoura T, Oikawa T, Ishimaru Y, Ueda M, Nakanishi H, Nishizawa NK (2016) Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots. Plant Mol Biol 91:533–547

    Article  CAS  Google Scholar 

  11. Khan GA, Vogiatzaki E, Glauser G, Poirier Y (2016) Phosphate deficiency induces the jasmonate pathway and enhances resistance to insect herbivory. Plant Physiol 171:632–644

    Article  CAS  Google Scholar 

  12. Ismail A, Seo M, Takebayashi Y, Kamiya Y, Eiche E, Nick P (2014) Salt adaptation requires efficient fine-tuning of jasmonate signalling. Protoplasma 251:881–898

    Article  CAS  Google Scholar 

  13. Fu J, Wu H, Ma S, Xiang D, Liu R, Xiong L (2017) OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front Plant Sci 8:2108

    Article  Google Scholar 

  14. Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397

    Article  Google Scholar 

  15. Wasternack C, Song S (2017) Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot 68:1303–1321

    CAS  Google Scholar 

  16. Dhakarey R, Kodackattumannil Peethambaran P, Riemann M (2016) Functional analysis of jasmonates in rice through mutant approaches. Plants (Basel) 5

    Google Scholar 

  17. Biswas KK, Neumann R, Haga K, Yatoh O, Iino M (2003) Photomorphogenesis of rice seedlings: a mutant impaired in phytochrome-mediated inhibition of coleoptile growth. Plant Cell Physiol 44:242–254

    Article  CAS  Google Scholar 

  18. Li X, Wang Y, Duan E, Qi Q, Zhou K, Lin Q, Wang D, Wang Y, Long W, Zhao Z et al (2018) Open Glume1: a key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice. Plant Cell Rep 37:329–346

    Article  CAS  Google Scholar 

  19. Xiao Y, Chen Y, Charnikhova T, Mulder PPJ, Heijmans J, Hoogenboom A, Agalou A, Michel C, Morel J-B, Dreni L et al (2014) OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice. Plant Mol Biol 86:19–33

    Article  CAS  Google Scholar 

  20. Lee S-H, Sakuraba Y, Lee T, Kim K-W, An G, Lee HY, Paek N-C (2015) Mutation of Oryza sativa Coronatine insensitive 1b (OsCOI1b) delays leaf senescence. J Integr Plant Biol 57:562–576

    Article  CAS  Google Scholar 

  21. Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8

    Article  CAS  Google Scholar 

  22. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  Google Scholar 

  23. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  24. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L-J (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  Google Scholar 

  25. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  Google Scholar 

  26. Dehairs J, Talebi A, Cherifi Y, Swinnen JV (2016) CRISP-ID: decoding CRISPR mediated indels by sanger sequencing. Sci Rep 6

    Google Scholar 

  27. Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Champion .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nguyen, T.H., Mai, H.T.T., Moukouanga, D., Lebrun, M., Bellafiore, S., Champion, A. (2020). CRISPR/Cas9-Mediated Gene Editing of the Jasmonate Biosynthesis OsAOC Gene in Rice. In: Champion, A., Laplaze, L. (eds) Jasmonate in Plant Biology. Methods in Molecular Biology, vol 2085. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0142-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0142-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0141-9

  • Online ISBN: 978-1-0716-0142-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics