Skip to main content

Long-Term Cell Fate Tracking of Individual Renal Cells Using Serial Intravital Microscopy

  • Protocol
  • First Online:
Imaging and Tracking Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2150))

Abstract

Intravital multiphoton microscopy of the kidney is a powerful technique to study alterations in tissue morphology and function simultaneously in the living animal and represents a dynamic and developing research tool in the field. Recent technological advances include serial intravital multiphoton microscopy of the same kidney regions over several weeks and combined with ex vivo histology for cellular biomarker expression of the same cells, which had been subject to serial imaging before. Thus, serial intravital multiphoton microscopy followed by ex vivo histology provides unique tools to perform long-term cell fate tracing of the same renal cells during physiological and pathophysiological conditions, thereby allowing the detection of structural changes of the same renal cells over time. Examples include renal cell migration and proliferation while linking these events to local functional alterations and eventually to the expression of distinct cellular biomarkers. Here, we provide a detailed step-by-step protocol to facilitate serial intravital multiphoton microscopy for long-term in vivo tracking of renal cells and subsequent ex vivo histology for immunohistological staining of the same cells in the fixed tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 19 February 2020

    The original version of this chapter was inadvertently published without a proper acknowledgement. The authors informed to insert the following acknowledgement in this chapter.

References

  1. Peti-Peterdi J, Burford JL, Hackl MJ (2012) The first decade of using multiphoton microscopy for high-power kidney imaging. Am J Physiol Renal Physiol 302(2):F227–F233. https://doi.org/10.1152/ajprenal.00561.2011

    Article  CAS  PubMed  Google Scholar 

  2. Schiessl IM, Castrop H (2016) Deep insights: intravital imaging with two-photon microscopy. Pflugers Arch 468(9):1505–1516. https://doi.org/10.1007/s00424-016-1832-7

    Article  CAS  PubMed  Google Scholar 

  3. Diaspro A, Bianchini P, Vicidomini G, Faretta M, Ramoino P, Usai C (2006) Multi-photon excitation microscopy. Biomed Eng Online 5:36. https://doi.org/10.1186/1475-925X-5-36

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaissling B, Lehir M, Kriz W (2013) Renal epithelial injury and fibrosis. Biochim Biophys Acta 1832(7):931–939. https://doi.org/10.1016/j.bbadis.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  5. Hackl MJ, Burford JL, Villanueva K, Lam L, Susztak K, Schermer B, Benzing T, Peti-Peterdi J (2013) Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags. Nat Med 19(12):1661–1666. https://doi.org/10.1038/nm.3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schiessl IM, Grill A, Fremter K, Steppan D, Hellmuth MK, Castrop H (2018) Renal interstitial platelet-derived growth factor receptor-beta cells support proximal tubular regeneration. J Am Soc Nephrol 29(5):1383–1396. https://doi.org/10.1681/ASN.2017101069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaverina NV, Kadoya H, Eng DG, Rusiniak ME, Sequeira-Lopez ML, Gomez RA, Pippin JW, Gross KW, Peti-Peterdi J, Shankland SJ (2017) Tracking the stochastic fate of cells of the renin lineage after podocyte depletion using multicolor reporters and intravital imaging. PLoS One 12(3):e0173891. https://doi.org/10.1371/journal.pone.0173891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ritsma L, Steller EJ, Ellenbroek SI, Kranenburg O, Borel Rinkes IH, van Rheenen J (2013) Surgical implantation of an abdominal imaging window for intravital microscopy. Nat Protoc 8(3):583–594. https://doi.org/10.1038/nprot.2013.026

    Article  CAS  PubMed  Google Scholar 

  9. Schiessl IM, Hammer A, Kattler V, Gess B, Theilig F, Witzgall R, Castrop H (2016) Intravital imaging reveals angiotensin ii-induced transcytosis of albumin by podocytes. J Am Soc Nephrol 27(3):731–744. https://doi.org/10.1681/ASN.2014111125

    Article  CAS  PubMed  Google Scholar 

  10. Schiessl IM, Kattler V, Castrop H (2015) In vivo visualization of the antialbuminuric effects of the angiotensin-converting enzyme inhibitor enalapril. J Pharmacol Exp Ther 353(2):299–306. https://doi.org/10.1124/jpet.114.222125

    Article  CAS  PubMed  Google Scholar 

  11. Schiessl IM, Bardehle S, Castrop H (2013) Superficial nephrons in BALB/c and C57BL/6 mice facilitate in vivo multiphoton microscopy of the kidney. PLoS One 8(1):e52499. https://doi.org/10.1371/journal.pone.0052499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burford JL, Villanueva K, Lam L, Riquier-Brison A, Hackl MJ, Pippin J, Shankland SJ, Peti-Peterdi J (2014) Intravital imaging of podocyte calcium in glomerular injury and disease. J Clin Invest 124(5):2050–2058. https://doi.org/10.1172/JCI71702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Butler MJ, Ramnath R, Kadoya H, Desposito D, Riquier-Brison A, Ferguson JK, Onions KL, Ogier AS, ElHegni H, Coward RJ, Welsh GI, Foster RR, Peti-Peterdi J, Satchell SC (2019) Aldosterone induces albuminuria via matrix metalloproteinase-dependent damage of the endothelial glycocalyx. Kidney Int 95(1):94–107. https://doi.org/10.1016/j.kint.2018.08.024

    Article  CAS  PubMed  Google Scholar 

  14. Peti-Peterdi J, Toma I, Sipos A, Vargas SL (2009) Multiphoton imaging of renal regulatory mechanisms. Physiology 24:88–96. https://doi.org/10.1152/physiol.00001.2009

    Article  CAS  PubMed  Google Scholar 

  15. Schiessl IM, Hammer A, Riquier-Brison A, Peti-Peterdi J (2016) Just look! Intravital microscopy as the best means to study kidney cell death dynamics. Semin Nephrol 36(3):220–236. https://doi.org/10.1016/j.semnephrol.2016.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA (2013) In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 83(1):72–83. https://doi.org/10.1038/ki.2012.328

    Article  CAS  PubMed  Google Scholar 

  17. Gyarmati G, Kadoya H, Moon JY, Burford JL, Ahmadi N, Gill IS, Hong YK, Der B, Peti-Peterdi J (2018) Advances in renal cell imaging. Semin Nephrol 38(1):52–62. https://doi.org/10.1016/j.semnephrol.2017.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weigert R, Porat-Shliom N, Amornphimoltham P (2013) Imaging cell biology in live animals: ready for prime time. J Cell Biol 201(7):969–979. https://doi.org/10.1083/jcb.201212130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Skala M, Ramanujam N (2010) Multiphoton redox ratio imaging for metabolic monitoring in vivo. Methods Mol Biol 594:155–162. https://doi.org/10.1007/978-1-60761-411-1_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sipos A, Toma I, Kang JJ, Rosivall L, Peti-Peterdi J (2007) Advances in renal (patho)physiology using multiphoton microscopy. Kidney Int 72(10):1188–1191. https://doi.org/10.1038/sj.ki.5002461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang JJ, Toma I, Sipos A, McCulloch F, Peti-Peterdi J (2006) Imaging the renin-angiotensin system: an important target of anti-hypertensive therapy. Adv Drug Deliv Rev 58(7):824–833. https://doi.org/10.1016/j.addr.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  22. Kang JJ, Toma I, Sipos A, McCulloch F, Peti-Peterdi J (2006) Quantitative imaging of basic functions in renal (patho)physiology. Am J Physiol Renal Physiol 291(2):F495–F502. https://doi.org/10.1152/ajprenal.00521.2005

    Article  CAS  PubMed  Google Scholar 

  23. Schiessl IM, Castrop H (2013) Angiotensin II AT2 receptor activation attenuates AT1 receptor-induced increases in the glomerular filtration of albumin: a multiphoton microscopy study. Am J Physiol Renal Physiol 305(8):F1189–F1200. https://doi.org/10.1152/ajprenal.00377.2013

    Article  CAS  PubMed  Google Scholar 

  24. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD, Clevers H (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143(1):134–144. https://doi.org/10.1016/j.cell.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  25. Degn SE, van der Poel CE, Firl DJ, Ayoglu B, Al Qureshah FA, Bajic G, Mesin L, Reynaud CA, Weill JC, Utz PJ, Victora GD, Carroll MC (2017) Clonal evolution of autoreactive germinal centers. Cell 170(5):913–926.e919. https://doi.org/10.1016/j.cell.2017.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. von Massenhausen A, Tonnus W, Himmerkus N, Parmentier S, Saleh D, Rodriguez D, Ousingsawat J, Ang RL, Weinberg JM, Sanz AB, Ortiz A, Zierleyn A, Becker JU, Baratte B, Desban N, Bach S, Schiessl IM, Nogusa S, Balachandran S, Anders HJ, Ting AT, Bleich M, Degterev A, Kunzelmann K, Bornstein SR, Green DR, Hugo C, Linkermann A (2018) Phenytoin inhibits necroptosis. Cell Death Dis 9(3):359. https://doi.org/10.1038/s41419-018-0394-3

    Article  CAS  Google Scholar 

  27. Dunn KW, Sutton TA, Sandoval RM (2012) Live-animal imaging of renal function by multiphoton microscopy. Curr Protoc Cytom Chapter 12:Unit12.19. https://doi.org/10.1002/0471142956.cy1209s62

    Article  Google Scholar 

  28. Gee JM, Smith NA, Fernandez FR, Economo MN, Brunert D, Rothermel M, Morris SC, Talbot A, Palumbos S, Ichida JM, Shepherd JD, West PJ, Wachowiak M, Capecchi MR, Wilcox KS, White JA, Tvrdik P (2014) Imaging activity in neurons and glia with a Polr2a-based and cre-dependent GCaMP5G-IRES-tdTomato reporter mouse. Neuron 83(5):1058–1072. https://doi.org/10.1016/j.neuron.2014.07.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salmon AH, Ferguson JK, Burford JL, Gevorgyan H, Nakano D, Harper SJ, Bates DO, Peti-Peterdi J (2012) Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol 23(8):1339–1350. https://doi.org/10.1681/ASN.2012010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakano D, Kobori H, Burford JL, Gevorgyan H, Seidel S, Hitomi H, Nishiyama A, Peti-Peterdi J (2012) Multiphoton imaging of the glomerular permeability of angiotensinogen. J Am Soc Nephrol 23(11):1847–1856. https://doi.org/10.1681/asn.2012010078

    Article  PubMed  PubMed Central  Google Scholar 

  31. Greka A, Mundel P (2012) Calcium regulates podocyte actin dynamics. Semin Nephrol 32(4):319–326. https://doi.org/10.1016/j.semnephrol.2012.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rigothier C, Auguste P, Welsh GI, Lepreux S, Deminiere C, Mathieson PW, Saleem MA, Ripoche J, Combe C (2012) IQGAP1 interacts with components of the slit diaphragm complex in podocytes and is involved in podocyte migration and permeability in vitro. PLoS One 7(5):e37695. https://doi.org/10.1371/journal.pone.0037695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Atkinson BT, Jasuja R, Chen VM, Nandivada P, Furie B, Furie BC (2010) Laser-induced endothelial cell activation supports fibrin formation. Blood 116(22):4675–4683. https://doi.org/10.1182/blood-2010-05-283986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sequeira Lopez ML, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6(5):719–728

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by US National Institutes of Health grants DK064324, DK100944, and S10OD021833 and by Lupus Research Alliance grant 519100 to J.P-P. IMS was funded by a postdoctoral research fellowship of the German Research Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schiessl, I.M., Fremter, K., Burford, J.L., Castrop, H., Peti-Peterdi, J. (2019). Long-Term Cell Fate Tracking of Individual Renal Cells Using Serial Intravital Microscopy. In: Turksen, K. (eds) Imaging and Tracking Stem Cells. Methods in Molecular Biology, vol 2150. Humana, New York, NY. https://doi.org/10.1007/7651_2019_232

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_232

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0626-1

  • Online ISBN: 978-1-0716-0627-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics