Skip to main content

Molecular Imaging and Tracking Stem Cells in Neurosciences

  • Protocol
  • First Online:
Imaging and Tracking Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2150))

Abstract

Stem cell transplantation is a promising new therapeutic option in different neurological diseases. However, it is not yet possible to translate its potential from animal models to clinical application. One of the main problems of applying stem cell transplantation in clinical medium is the difficulty of detection, localization, and examination of the stem cells in vivo at both cellular and molecular levels. State-of-the-art molecular imaging techniques provide new and better means for noninvasive, repeated, and quantitative tracking of stem cell implant or transplant. From initial deposition to the survival, migration, and differentiation of the transplant/implanted stem cells, current molecular imaging methods allow monitoring of the infused cells in the same live recipient over time. The present review briefly summarizes and compares these molecular imaging methods for cell labeling and imaging in animal models as well as in clinical application and sheds light on consecutive new therapeutic options if appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arvidsson A, Collin T, Kirik D et al (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  CAS  Google Scholar 

  2. Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882

    Article  Google Scholar 

  3. Karussis D, Karageorgiou C, Vaknin Dembinsky A et al (2010) Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 67:1187–1194

    Article  Google Scholar 

  4. Lichtenwalnder RJ, Parent JM (2006) Adult neurogenesis and ischemic forebrain. J Cereb Blood Flow Metab 26:1–20

    Article  Google Scholar 

  5. Martino G, Franklin RJM, Van Evercooren AB, Kerr DA (2010) Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat Rev Neurol 6:247–255

    Article  Google Scholar 

  6. Schaller B, Cornelius JF, Sandu N (2003) Molecular medicine successes in neurosciences. Mol Med 14:361–364

    Article  Google Scholar 

  7. Arbab AS, Frank JA (2008) Cellular MRI and its role in stem cell therapy. Regen Med 3:199–215

    Article  CAS  Google Scholar 

  8. Modo M, Hoehn M, Bulte J (2005) Cellular MR imaging. Mol Imaging 4:1–21

    Article  Google Scholar 

  9. Schaller B (2004) Usefulness of positron emission tomography in diagnosis and treatment follow-up of brain tumors. Neurobiol Dis 15:437–448

    Article  CAS  Google Scholar 

  10. Schaller BJ, Modo M, Buchfelder M (2007) Molecular imaging of brain tumors: a bridge between clinical and molecular medicine? Mol Imaging Biol 9:60–71

    Article  CAS  Google Scholar 

  11. Sandu N, Momen-Heravi F, Sadr-Eshkevari P, Schaller B (2012) Molecular imaging for stem cell transplantation in neuroregenerative medicine. Neurodegener Dis 9:60–67

    Article  CAS  Google Scholar 

  12. Bentz K, Molcanyi M, Hess S et al (2006) Neural differentiation of embryonic stem cells is induced by signalling from non-neural niche cells. Cell Physiol Biochem 18:275–286

    Article  CAS  Google Scholar 

  13. Kornyei Z, Szlávik V, Szabó B, Gócza E, Czirók A, Madarász E (2005) Humoral and contact interactions in astroglia/stem cell co-cultures in the course of glia-induced neurogenesis. Glia 49:430–444

    Article  Google Scholar 

  14. Nakano K, Migita M, Mochizuki H, Shimada T (2001) Differentiation of transplanted bone marrow cells in the adult mouse brain. Transplantation 71:1735–1740

    Article  CAS  Google Scholar 

  15. Yu D, Silva GA (2008) Stem cell sources and therapeutic approaches for central nervous system and neural retinal disorders. Neurosurg Focus 24:E10

    Article  Google Scholar 

  16. Bloor CM, White FC, Roth DM (1992) The pig as a model of myocardial ischemia and gradual coronary artery occlusion. In: Swindle M, Moody MM, Phillips DC, Ames LD (eds) Swine as models in biomedical research. Iowa State University Press, Iowa, pp 163–175

    Google Scholar 

  17. Hess DC, Abe T, Hill WD et al (2004) Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol 186:134–144

    Article  CAS  Google Scholar 

  18. Rueger MA, Backes H, Walberer M et al (2010) Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. J Neurosci 30:6454–6460

    Article  CAS  Google Scholar 

  19. Matusik E, Wajgt A, Janowska J et al (2009) Cell adhesion molecular markers in ischaemic stroke patients: correlation with clinical outcome and comparison with primary autoimmune disease. Arch Med Sci 5:182–189

    CAS  Google Scholar 

  20. Sandu N, Schaller B (2010) Stem cell transplantation in brain tumors: a new field for molecular imaging. Mol Med 16:33–37

    Google Scholar 

  21. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131

    Article  CAS  Google Scholar 

  22. Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (Lond) 3:567–578

    Article  CAS  Google Scholar 

  23. Schaller BJ, Buchfelder M (2006) Neuroprotection in primary brain tumors: sense or nonsense? Expert Rev Neurother 6:723–730

    Article  CAS  Google Scholar 

  24. Schaller B (2008) State-of-the-art-imaging methods to investigate the neurovascular mechanism in the origin of Alzheimer’s disease. Differential diagnostic evaluations to other types of dementia. Neuropsychiatr Dis Treat 4:585–612

    Article  CAS  Google Scholar 

  25. Yamagata K, Urakami K, Ikeda K et al (2001) High expression of apolipoprotein EmRNA in the brains with sporadic Alzheimer’s disease. Dement Geriatr Cogn Disord 12:57–62

    Article  CAS  Google Scholar 

  26. Yeh E, Gustafson K, Boulianne GL (1995) Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci U S A 92:7036–7040

    Article  CAS  Google Scholar 

  27. Schaller BJ, Cornelius JF, Sandu N, Buchfelder M (2008) Molecular imaging of brain tumors: personal experience and review of the literature. Curr Mol Med 8:711–712 200

    Article  CAS  Google Scholar 

  28. Joyce N, Annett G, Wirthlin L et al (2010) Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med 5:933–946

    Article  Google Scholar 

  29. Koehne G, Doubrovin M, Doubrovina E et al (2003) Serial in vivo imaging of targeted migration of human HSV-TK-transduced antigen-specific lymphocytes. Nat Biotechnol 21:405–413

    Article  CAS  Google Scholar 

  30. Gould SJ, Subramani S (1988) Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175:5–13

    Article  CAS  Google Scholar 

  31. Keenan TM, Nelson AD, Grinager JR, Thelen JC, Svendsen CN (2010) Real time imaging of human progenitor neurogenesis. PLoS One 5:e13187

    Article  Google Scholar 

  32. Massoud TF, Singh A, Gambhir SS (2008) Noninvasive molecular neuroimaging using reporter genes: part I, principles revisited. AJNR Am J Neuroradiol 29:229–234

    Article  CAS  Google Scholar 

  33. Tokuda T, Qureshi MM, Ardah MT et al (2010) Detection of elevated levels of {alpha}-synuclein oligomers in CSF from patients with Parkinson disease. Neurology 75:1766–1770

    Article  CAS  Google Scholar 

  34. Gaura V, Bachoud-Levi A-C, Ribeiro M-J et al (2004) Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 127:65–72

    Article  Google Scholar 

  35. Lee BD, Shin JH, VanKampen J et al (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 16:998–1000

    Article  CAS  Google Scholar 

  36. Ray P, Tsien R, Gambhir SS (2007) Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67:3085–3093

    Article  CAS  Google Scholar 

  37. Tong L, Zhao H, He Z, Li Z (2013) Current perspectives on molecular imaging for tracking stem cell therapy, medical imaging in clinical practice. In: Erondu OF (ed) Medical imaging in clinical practice. InTech, London. https://doi.org/10.5772/53028

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sandu, N., Rosemann, T., Schaller, B. (2019). Molecular Imaging and Tracking Stem Cells in Neurosciences. In: Turksen, K. (eds) Imaging and Tracking Stem Cells. Methods in Molecular Biology, vol 2150. Humana, New York, NY. https://doi.org/10.1007/7651_2019_218

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_218

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0626-1

  • Online ISBN: 978-1-0716-0627-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics