Skip to main content

Dental Pulp Stem Cells in Customized 3D Nanofibrous Scaffolds for Regeneration of Peripheral Nervous System

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2125))

Abstract

Dental pulp stem cells (DPSCs) are adult multipotent stem cells of neuroectodermal origin; they provide an encouraging perspective in the domain of nerve tissue engineering. DPSCs could be transplanted in biodegradable electrospun neuro-supportive scaffold (optimized in various 3D geometries like coating on the surface of titanium implant, hollow/solid tubes, etc.) for enhanced in vivo recovery of peripheral nerves. Herein, we describe the fabrication of uniform bead-free nanofibrous scaffold which supports DPSCs, proliferation, and their subsequent neural differentiation and thus could be utilized for enhanced regeneration of peripheral nervous system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  CAS  Google Scholar 

  2. Nosrat IV, Smith CA, Mullally P, Olson L, Nosrat CA (2004) Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur J Neurosci 19:2388–2398

    Article  Google Scholar 

  3. Huang AHC, Snyder BR, Cheng PH, Chan AW (2008) Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 26:2654–2663

    Article  CAS  Google Scholar 

  4. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 122:80–90

    CAS  PubMed  Google Scholar 

  5. Nosrat IV, Widenfalk J, Olson L, Nosrat CA (2001) Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol 238:120–132

    Article  CAS  Google Scholar 

  6. Robinson LR (2000) Traumatic injury to peripheral nerves. Muscle Nerve 23:863–873

    Article  CAS  Google Scholar 

  7. Ciardelli G, Chiono V (2006) Materials for peripheral nerve regeneration. Macromol Biosci 6:13–26

    Article  CAS  Google Scholar 

  8. Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG (2002) Bioactive poly (L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials 23:841–848

    Article  CAS  Google Scholar 

  9. Daly W, Yao L, Zeugolis D, Windebank A, Pandit A (2011) A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 9:202–221

    Article  Google Scholar 

  10. Bhatia SK (2010) Biomaterials for clinical applications. Springer Science & Business Media

    Google Scholar 

  11. Chen X, Wang XD, Chen G, Lin WW, Yao J, Gu XS (2006) Study of in vivo differentiation of rat bone marrow stromal cells into schwann cell-like cells. Microsurgery 26:111–115

    Article  CAS  Google Scholar 

  12. Lopes FRP, de Moura CLC, Corrêa JD Jr, Balduino A, Lora S, Langone F, Borojevic R, Martinez AMB (2006) Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice. Exp Neurol 198:457–468

    Article  CAS  Google Scholar 

  13. Wang D, Liu X-L, Zhu J-K, Jiang L, Hu J, Zhang Y, Yang L-M, Wang H-G, Yi J-H (2008) Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res 1188:44–53

    Article  CAS  Google Scholar 

  14. Hou S-Y, Zhang H-Y, Quan D-P, Liu X-L, Zhu J-K (2006) Tissue-engineered peripheral nerve grafting by differentiated bone marrow stromal cells. Neuroscience 140:101–110

    Article  CAS  Google Scholar 

  15. Choi B-H, Zhu S-J, Kim B-Y, Huh J-Y, Lee S-H, Jung J-H (2005) Transplantation of cultured bone marrow stromal cells to improve peripheral nerve regeneration. Int J Oral Maxillofac Surg 34:537–542

    Article  Google Scholar 

  16. Gilmore JL, Yi X, Quan L, Kabanov AV (2008) Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharm 3:83–94

    Article  Google Scholar 

  17. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539

    Article  CAS  Google Scholar 

  18. Bender MD, Bennett JM, Waddell RL, Doctor JS, Marra KG (2004) Multi-channeled biodegradable polymer/CultiSpher composite nerve guides. Biomaterials 25:1269–1278

    Article  CAS  Google Scholar 

  19. Waddell RL, Marra KG, Collins KL, Leung JT, Doctor JS (2003) Using PC12 cells to evaluate poly (caprolactone) and collagenous microcarriers for applications in nerve guide fabrication. Biotechnol Prog 19:1767–1774

    Article  CAS  Google Scholar 

  20. Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A 98:7841–7845

    Article  CAS  Google Scholar 

  21. Mareschi K, Novara M, Rustichelli D, Ferrero I, Guido D, Carbone E, Medico E, Madon E, Vercelli A, Fagioli F (2006) Neural differentiation of human mesenchymal stem cells: evidence for expression of neural markers and eag K+ channel types. Exp Hematol 34:1563–1572

    Article  CAS  Google Scholar 

  22. Das S, Gurav S, Soni V, Ingle A, Mohanty BS, Chaudhari P, Bendale K, Dholam K, Bellare JR (2018) Osteogenic nanofibrous coated titanium implant results in enhanced osseointegration: in vivo preliminary study in a rabbit model. Tissue Eng Regen Med 15:231–247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayesh R. Bellare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Das, S., Bellare, J.R. (2018). Dental Pulp Stem Cells in Customized 3D Nanofibrous Scaffolds for Regeneration of Peripheral Nervous System. In: Turksen, K. (eds) Stem Cell Nanotechnology. Methods in Molecular Biology, vol 2125. Humana, New York, NY. https://doi.org/10.1007/7651_2018_194

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_194

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0359-8

  • Online ISBN: 978-1-0716-0360-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics