Topics in Mining, Metallurgy and Materials Engineering

Series editor
Carlos P. Bergmann, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
“Topics in Mining, Metallurgy and Materials Engineering” welcomes manuscripts in these three main focus areas: Extractive Metallurgy/Mineral Technology; Manufacturing Processes, and Materials Science and Technology. Manuscripts should present scientific solutions for technological problems. The three focus areas have a vertically lined multidisciplinarity, starting from mineral assets, their extraction and processing, their transformation into materials useful for the society, and their interaction with the environment.

More information about this series at http://www.springer.com/series/11054
Liquid Metal Soft Machines
Principles and Applications
In recent years, a group of very fundamental discoveries were continuously made on liquid metals which paved new ways for making new generation soft machines even highly advanced transformable robots. Unlike former endeavors of tackling pure liquid metal matters, the new findings revealed that hybrid components with both liquid metal and related solution including certain solid elements together would enable rather complicated machine styles. Along this direction, many pivotal findings were being achieved on shape changeable liquid metals or smart transformers.

Particularly, owing to the discovery of the extraordinary self-powered liquid metal effect, a group of long-lasting and quickly running soft machines which run just like a biomimetic mollusk became now also possible. This new generation machine owns the capabilities of autonomous convergence or divergence during chasing which are hard to image otherwise by conventional machines, even biological systems. And more liquid metal smart machines are still on the way.

In a large extent, the finding of artificial liquid metal machines opens an exciting platform for designing future soft robot, microfluidic systems, and may eventually lead to the envisioned dynamically reconfigurable intelligent soft robots. Aiming for this goal, several years before, we had ever initiated a program named as SMILE (soft machine based on intelligence, liquid metal, and electronics). Clearly, all these machine or robot styles are based on the soft, fluidic, and multi-physical and chemical capabilities of liquid metal.

In fact, with many outstanding material merits inside, the liquid metal is rather promising in making various complicated machine styles whose ultimate goal is definitely biology like robots. The next step for advancing liquid metal machine is therefore to just fully simulate nature. Meanwhile, some newly emerging liquid metal 3D printing methods will also aid for such machine fabrications. It is expected that a wonderful world of liquid metal soft robots will come true in the near future.

To push forward further researches and possible applications along the above important frontier, this book is dedicated to draft a new machine category: the liquid metal soft machines or motors. The major advancements as achieved before will be
summarized and future directions worth of pursuing will be outlined. Representative applications enabled by liquid metal machines from both fundamental and practical aspects will be reviewed. Perspective for future development in the area of liquid metal soft machine was given.

The present book is an output of our lab’s more than 10 years’ continuous academic endeavors. Over the past few years, a group of our faculties, postdoctoral research fellows, graduate students, and collaborators have made important contributions to mold this new area of liquid metal robots. The authors would like to take this chance to express their sincere appreciations to those people who have offered their professional contribution: Dr. Jie Zhang, Dr. Bin Yuan, Dr. Jianbo Tang, Dr. Lei Wang, Dr. Sicong Tan, Dr. Qian Wang, Dr. Yang Yu, Dr. Liting Yi, Dr. Liang Hu, Dr. Shuting Liang, Mr. Youyou Yao, Mr. Xiaohu Yang, Mr. Hongzhang Wang, Mr. Sen Chen, Mr. Yujie Ding, and Mr. Wenqiang Fang. Lastly but not least, the senior author of this book would like to acknowledge the generous support from the NSFC Key Project under Grant No. 91748206, the Frontier Project of the Chinese Academy of Sciences, Special Foundation of President of the Chinese Academy of Sciences, and Tsinghua University Initiative Scientific Research Program. Thanks for all these valuable supports, the present book could now become a reality.

We humbly hope that this book could serve as a start point for the academics to quickly grasp the basics of the liquid metal soft machine and thus better advance the area. We would very much welcome any critical comments and constructive suggestions from the readers for us to further enhance our book which would be incorporated into its future possible updated version.

Beijing, China

July 2018

Jing Liu
Lei Sheng
Zhi-Zhu He
Contents

1 Introduction .. 1
 1.1 Basics About Robots 2
 1.2 Rise of Soft Machine 2
 1.3 Advancements in Soft Robot 4
 1.4 About New Generation Soft and Smart Materials of Liquid Metal ... 5
 1.5 Emergence of Liquid Metal Soft Robot 7
 1.6 Conclusion 10
 References .. 10

2 Basic Properties of Liquid Metal and Soft Matter 13
 2.1 The Room Temperature Liquid Metals 13
 2.2 The Physical and Chemical Properties of Liquid Metal Alloy ... 16
 2.3 The Hydrodynamics of Liquid Metal Droplets 24
 2.4 Liquid Metal-Based Composite Materials 29
 References .. 34

3 Injectable Transformation of Liquid Metal 37
 3.1 About Generation of Liquid Metal Droplets 38
 3.2 Mechanical Approach for Liquid Metal Injection 39
 3.3 Large-Scale Fabrication of Liquid Metal Droplets 40
 3.4 Fabrication of Liquid Metal Droplets Inside Different Fluids ... 43
 3.5 Electro-Hydrodynamic Shooting Phenomenon to Generate Liquid Metal Droplets 48
 References .. 54
4 Electrically Induced Transformations of Liquid Metal Among Different Morphologies

4.1 About Transformable Soft Machines

4.2 Electrical Approach to Control Liquid Metal in Aqueous Environment

4.3 Transformation and Mergence of Liquid Metal Objects

4.4 Rotation of Liquid Metal Sphere and Its Induced Water Vortexes

4.5 Planar Locomotion of Liquid Metal Objects

4.6 Programmable Liquid Metal Machines

4.7 Alternating Electric Field to Control Liquid Metal

4.8 Alternating Electric Field Actuated Oscillating Behavior of Liquid Metal

4.9 Practical Value of Alternating Electric Field Actuated Liquid Metal

4.10 Capability Demonstration on Liquid Metal Worm Squeezing Across Narrow Gap

4.10.1 Test Situations for Running the Liquid Metal Warm

4.10.2 Liquid Metal Warm as Case of Transformable Machine

4.10.3 Transformable Capability of Liquid Metal Warm

4.10.4 Test Situations for Running the Liquid Metal Warm

References

5 Reversible Transformation of Liquid Metal Machine

5.1 Basics of Reversible Transformation

5.2 Working SCHEME of Reversible Liquid Metal Deformation

5.3 Realization of Large-Scale Reversible Deformation

5.4 Major Factors to Dominate the Reversible Deformation

5.5 Effect of the Applied Voltage and Electrode Spacing

5.6 Effect of Concentration and Acid–Base Property

5.7 Effect of Liquid Metal Volume on Its Deformability

5.8 Deformation of Liquid Metal Induced by Low and Periodic Voltage

5.9 Deformation Induced by Larger Size Electrodes or Unfixed Cathode

5.10 Conclusion

References

6 Electromagnetic Field Induced Transformation of Liquid Metal

6.1 Electromagnetic Rotation of Liquid Metal Sphere

6.2 About the Test Liquid Metal Materials
Contents

6.3 Motion Characteristic of Electrolyte Solution in Electromagnetic Field ... 111
6.4 Rotational Motion of Liquid Metal Sphere in Electromagnetic Field .. 113
6.5 Controlling the Rotating Motion of a Liquid Metal Pool ... 114
6.6 Liquid Metal Folding Patterns Induced by Electric Capillary Force .. 119

References ... 127

7 Self-Fueled Transformable Liquid Metal Machine ... 131
7.1 About Self-fueled Machine .. 132
7.2 About Self-fueled Liquid Metal Machine ... 133
7.3 Fabrication of Structures for Running Liquid Metal Machine ... 134
7.4 Locomotion of Liquid Metal Motor in Free Space of a Petri Dish .. 135
7.5 Adaptability of Liquid Metal Mollusk to Various Surface Profiles ... 136
7.6 Liquid Metal Motor Moving Autonomously in One-Way Channel ... 141
7.7 Working Mechanism for Self-fueled Liquid Metal Motor ... 142
 7.7.1 The Resistance from the Solution to Overcome for the Actuation .. 143
 7.7.2 The Mechanism of the Autonomous Motion of Liquid Metal Motor .. 145
7.8 Pumping Effect of EGaIn Motor .. 149
7.9 Autonomous Convergence and Divergence of Liquid Metal Vehicles .. 154
7.10 Dynamic Hydrogen Generation Phenomenon in Liquid Metal Machine 161

References ... 169

8 Self-Powered Tiny Liquid Metal Motors .. 173
8.1 Size Issue of Self-Fueled Liquid Metal Machines ... 174
8.2 Injectable Generation of Self-Fueled Liquid Metal Droplet Motors ... 174
8.3 Basic Behaviors of Liquid Metal Droplet Motors Running Inside Channel 175
8.4 Macroscopic Brownian Motion of Liquid Metal Motors in Free Space 181
8.5 Dynamic Motion of Al–Ga–In Alloy Droplet Motors ... 182
8.6 Driving Mechanisms of Tiny Liquid Metal Motor .. 183
8.7 Magnetic Trap Effect of Liquid Metal Motors ... 189
8.8 Conclusion ... 195

References ... 196
9 Liquid Metal Transient State Machine .. 199
 9.1 About Transient State Machine ... 200
 9.2 Preparation of Functional Liquid Metal Alloy 201
 9.3 Force and Velocity of Transient State Motors 201
 9.4 Schematic for Transient State Liquid Metal Machine 203
 9.5 Transient State Machine in Different States 204
 9.6 Interpretation of Transient State Machine 210
 9.7 About Color-Changeable Soft Machine 213
 9.8 Fluorescent Liquid Metal as Transformable Biomimetic Chameleon 213
 9.9 Mechanism of Fluorescent Liquid Metal Chameleon 215
 9.10 Transformation and Discoloration of Fluorescent LM Marbles .. 217
 9.11 Conclusion .. 220
References ... 221

10 Directional Control of Self-fuelled Liquid Metal Machine 223
 10.1 Motion Control of Small Motors in Solution 224
 10.2 The Aimless Motion of Liquid Metal Motor in Petri Dish 225
 10.3 Electrical Actuation Mechanism of Liquid Metal Machine 228
 10.4 Self-propelled Liquid Metal Motors with Magnetic Property ... 232
 10.5 Preparation of Ni/EGaIn Droplet and Ni/al/EGaIn Motor 234
 10.6 Preparation of Hyd/al/EGaIn-Al Motor and
 Hyd/Ni/al/EGaIn-Al Motor .. 235
 10.7 Ni/EGaIn Droplet Under Magnetic or Electric Field 235
 10.8 Self-propulsion of Ni/al/EGaIn Motor 237
 10.9 Manipulation of Self-propelled Ni/Al/EGaIn Motor
 by Magnetic Field ... 240
 10.10 Control of Self-propelled Ni/al/EGaIn Motor by Electric
 Field .. 243
 10.11 Self-propelled Motor for Drug Delivery 245
References ... 246

11 Environment Enabled Liquid Metal Machine 249
 11.1 About Breathing Enabled Liquid Metal Machine 249
 11.2 Experiments on the Breathing Driven Liquid Metal
 Beating Heart .. 251
 11.3 Cyclic Oscillation of Liquid Metal Droplet 252
 11.4 Tracing the Dynamic Behaviors 252
 11.5 Mechanisms of the Breathing Enabled Self-propulsion 255
 11.6 Heat-Powered Thermo-Pneumatic Liquid Metal Machine 259
 11.7 Working Performance of the Heat-Powered Liquid Metal
 Machine ... 262
References ... 265
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Interfacial Interactions on Liquid Metal Droplets</td>
<td>267</td>
</tr>
<tr>
<td>12.2</td>
<td>Jumping Liquid Metal Droplet in Electrolyte</td>
<td>268</td>
</tr>
<tr>
<td>12.3</td>
<td>Conspicuous Mechanics of Jumping Liquid Metal Droplet in Electrolyte</td>
<td>271</td>
</tr>
<tr>
<td>12.4</td>
<td>Further Mechanism Discussion</td>
<td>275</td>
</tr>
<tr>
<td>12.5</td>
<td>Particles Triggered Liquid Metal Surface Convection</td>
<td>275</td>
</tr>
<tr>
<td>12.6</td>
<td>Tracing Liquid Metal Surface Convection with a Particle Raft</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>284</td>
</tr>
<tr>
<td>13.1</td>
<td>Transformation of Liquid Metal Droplet on Graphite</td>
<td>287</td>
</tr>
<tr>
<td>13.2</td>
<td>Transformation Induced by Direct Connection with Electrode</td>
<td>291</td>
</tr>
<tr>
<td>13.3</td>
<td>Electric Field Induced Planar Locomotion of Liquid Metal on Graphite</td>
<td>291</td>
</tr>
<tr>
<td>13.4</td>
<td>Electric Field Driven Upslope Locomotion of Liquid Metal on Graphite</td>
<td>296</td>
</tr>
<tr>
<td>13.5</td>
<td>Liquid Metal Amoeba Enabled by Substrate Effects</td>
<td>298</td>
</tr>
<tr>
<td>13.6</td>
<td>Transformations of Liquid Metal–Al Droplets on Graphite</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>308</td>
</tr>
<tr>
<td>14.1</td>
<td>About Snake-like Motions of Soft Robots</td>
<td>312</td>
</tr>
<tr>
<td>14.2</td>
<td>Approaches to Realize and Characterize Serpentine Liquid Metal Machine</td>
<td>313</td>
</tr>
<tr>
<td>14.3</td>
<td>Basics of Serpentine Locomotion</td>
<td>313</td>
</tr>
<tr>
<td>14.4</td>
<td>Surface Tension Imbalance Originating from the Cu–Ga Galvanic Couples</td>
<td>315</td>
</tr>
<tr>
<td>14.5</td>
<td>Factors to Affect Serpentine Locomotion of Liquid Metal Machine</td>
<td>318</td>
</tr>
<tr>
<td>14.6</td>
<td>Conclusion</td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>326</td>
</tr>
<tr>
<td>15.1</td>
<td>Oscillation Behavior of Copper Wire in Liquid Metal Machine</td>
<td>329</td>
</tr>
<tr>
<td>15.2</td>
<td>Quantifying the Oscillation Behavior of Hybrid Liquid Metal Machine</td>
<td>330</td>
</tr>
<tr>
<td>15.3</td>
<td>Interpretation of the Oscillation Phenomenon</td>
<td>331</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>332</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>15.4</td>
<td>Controlling Oscillation Process of Hybrid Liquid Metal Machine</td>
<td>337</td>
</tr>
<tr>
<td>15.5</td>
<td>Graphite-Induced Periodical Self-actuation of Liquid Metal</td>
<td>341</td>
</tr>
<tr>
<td>15.6</td>
<td>Resonance Phenomenon of Two Liquid Metal Spheres Contacting with Graphite</td>
<td>344</td>
</tr>
<tr>
<td>15.7</td>
<td>Galvanic Corrosion Couple Induced Marangoni Flow of Liquid Metal</td>
<td>348</td>
</tr>
<tr>
<td>15.8</td>
<td>Temperature Effect on Galvanic Couple Induced Marangoni Flow of Liquid Metal</td>
<td>353</td>
</tr>
<tr>
<td>References</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Liquid Metal Wheeled 3D-Printed Vehicle</td>
<td>359</td>
</tr>
<tr>
<td>16.1</td>
<td>About Liquid Metal Wheeled Vehicle</td>
<td>359</td>
</tr>
<tr>
<td>16.2</td>
<td>Fabrication of Liquid Metal Vehicle</td>
<td>361</td>
</tr>
<tr>
<td>16.3</td>
<td>Solo-Wheel Liquid Metal Vehicle</td>
<td>362</td>
</tr>
<tr>
<td>16.4</td>
<td>Four-Wheel Liquid Metal Vehicle</td>
<td>363</td>
</tr>
<tr>
<td>16.5</td>
<td>Boat-like Liquid Metal Vehicle</td>
<td>369</td>
</tr>
<tr>
<td>16.6</td>
<td>Perspective of Future Liquid Metal Vehicle</td>
<td>371</td>
</tr>
<tr>
<td>References</td>
<td>371</td>
<td></td>
</tr>
</tbody>
</table>
Abstract

This book is to present the core principles and practical applications of a latest machine category: The liquid metal soft machines or robots. Along with a brief introduction on the conventional soft robot and its allied materials, the new conceptual liquid metal machines were introduced to revolutionize existing rigid robots either in large or small size. Typical features of the soft liquid metal materials were outlined. Various transformational and locomotion capabilities of liquid metal machines under either external fields or intrinsic driving fuels were illustrated. Meanwhile, a series of unusual phenomena thus disclosed toward making the shape changeable smart soft machines were presented. The related physical or chemical mechanisms to control the liquid metal transformers were interpreted. Important strategies were explained to construct a group of different advanced functional liquid metal soft machines or robots which are hard to fabricate otherwise via rigid metal or conventional materials. With both fundamental and practical importance, this book is expected to serve as basic reference for making future generation smart soft machine or accompanying robots.

Keywords Liquid metal · Soft machine · Transformable robot
Smart materials