Forestry Applications of Airborne Laser Scanning
Managing Forest Ecosystems

Series Editors:

Klaus von Gadow
Georg-August-University, Göttingen, Germany

Timo Pukkala
University of Joensuu, Joensuu, Finland

and

Margarida Tomé
Instituto Superior de Agronomía, Lisbon, Portugal

Aims & Scope:

Well-managed forests and woodlands are a renewable resource, producing essential raw material with minimum waste and energy use. Rich in habitat and species diversity, forests may contribute to increased ecosystem stability. They can absorb the effects of unwanted deposition and other disturbances and protect neighbouring ecosystems by maintaining stable nutrient and energy cycles and by preventing soil degradation and erosion. They provide much-needed recreation and their continued existence contributes to stabilizing rural communities.

Forests are managed for timber production and species, habitat and process conservation. A subtle shift from multiple-use management to ecosystems management is being observed and the new ecological perspective of multi-functional forest management is based on the principles of ecosystem diversity, stability and elasticity, and the dynamic equilibrium of primary and secondary production.

Making full use of new technology is one of the challenges facing forest management today. Resource information must be obtained with a limited budget. This requires better timing of resource assessment activities and improved use of multiple data sources. Sound ecosystems management, like any other management activity, relies on effective forecasting and operational control.

The aim of the book series Managing Forest Ecosystems is to present state-of-the-art research results relating to the practice of forest management. Contributions are solicited from prominent authors. Each reference book, monograph or proceedings volume will be focused to deal with a specific context. Typical issues of the series are: resource assessment techniques, evaluating sustainability for even-aged and uneven-aged forests, multi-objective management, predicting forest development, optimizing forest management, biodiversity management and monitoring, risk assessment and economic analysis.

For further volumes:
http://www.springer.com/series/6247
Forestry Applications of Airborne Laser Scanning

Concepts and Case Studies

Springer
Preface

Use of airborne laser scanning to provide data for research and operational applications in management of forest ecosystems has experienced a tremendous growth since the mid-1990s and the amount of scientific publications resulting from this activity has increased rapidly. Yet there is no textbook available to bring together the results across this multitude of disciplines and synthesize on the state of the art. The aim of this book is to fill this gap by providing a unique collection of in-depth reviews and overviews of the research and application of airborne laser scanning in a broad range of forest-related disciplines. However, this book is more than just a collection of individual contributions – it consists of a well-composed blend of chapters dealing with fundamental methodological issues and contributions reviewing and illustrating the use of airborne laser scanning within various domains of application. There are numerous cross-references between the various chapters of the book which may be useful for readers who wish to get a more in-depth understanding of a particular issue.

We hope researchers, students, and practitioners will find this book useful. We also hope that colleagues will find the book of value as part of the curriculum in forestry schools and those schools offering courses in forest remote sensing and forest ecosystem assessments in a broader sense.

This book is the result of a collective effort by many good colleagues and friends. They are all listed by name as authors of the various chapters. In addition to the authors of the chapters, many researchers around the world have helped us by reviewing chapters and suggesting improvements. We would like to acknowledge these external reviewers for their efforts to improve this book: Gregory P. Asner, Mathias Disney, James W. Flewelling, Jari Kouki, Peter Krzystek, Mikko Kurttila, Tomas Lämås, Eva Lindberg, Steen Magnussen, Håkan Olsson, Pekka Savolainen, Svein Solberg, Göran Ståhl, and Valerie Thomas. The errors remaining are nevertheless attributable entirely to the authors.

Joensuu, Finland
Ås, Norway
Helsinki, Finland

Matti Maltamo
Erik Næsset
Jari Vauhkonen
Contents

1 Introduction to Forestry Applications of Airborne Laser Scanning ... 1
Jari Vauhkonen, Matti Maltamo, Ronald E. McRoberts, and Erik Næsset

Part I Methodological Issues

2 Laser Pulse Interaction with Forest Canopy: Geometric and Radiometric Issues .. 19
Andreas Roncat, Felix Morsdorf, Christian Briese, Wolfgang Wagner, and Norbert Pfeifer

3 Full-Waveform Airborne Laser Scanning Systems and Their Possibilities in Forest Applications 43
Markus Hollaus, Werner Mücke, Andreas Roncat, Norbert Pfeifer, and Christian Briese

4 Integrating Airborne Laser Scanning with Data from Global Navigation Satellite Systems and Optical Sensors 63
Rubén Valbuena

5 Segmentation of Forest to Tree Objects .. 89
Barbara Koch, Teja Kattenborn, Christoph Straub, and Jari Vauhkonen

6 The Semi-Individual Tree Crown Approach 113
Johannes Breidenbach and Rasmus Astrup

7 Tree Species Recognition Based on Airborne Laser Scanning and Complementary Data Sources 135
Jari Vauhkonen, Hans Ole Ørka, Johan Holmgren, Michele Dalponte, Johannes Heinzel, and Barbara Koch
8 Estimation of Biomass Components by Airborne Laser Scanning … 157
Sorin C. Popescu and Marius Hauglin

9 Predicting Tree Diameter Distributions …………………………… 177
Matti Maltamo and Terje Gobakken

10 A Model-Based Approach for the Recovery of Forest Attributes Using Airborne Laser Scanning Data ……….. 193
Lauri Mehtätalo, Jukka Nyblom, and Anni Virolainen

Part II Forest Inventory Applications

11 Area-Based Inventory in Norway – From Innovation to an Operational Reality ……………………………………… 215
Erik Næsset

12 Species-Specific Management Inventory in Finland ………………… 241
Matti Maltamo and Petteri Packalen

13 Inventory of Forest Plantations ……………………………………… 253
Jari Vauhkonen, Jan Rombouts, and Matti Maltamo

14 Using Airborne Laser Scanning Data to Support Forest Sample Surveys ………………………………………………… 269
Ronald E. McRoberts, Hans-Erik Andersen, and Erik Næsset

15 Modeling and Estimating Change …………………………………… 293
Ronald E. McRoberts, Ole Martin Bollandsås, and Erik Næsset

16 Valuation of Airborne Laser Scanning Based Forest Information … 315
Annika Kangas, Tron Eid, and Terje Gobakken

Part III Ecological Applications

17 Assessing Habitats and Organism-Habitat Relationships by Airborne Laser Scanning ……………………………………… 335
Ross A. Hill, Shelley A. Hinsley, and Richard K. Broughton

18 Assessing Biodiversity by Airborne Laser Scanning ………………… 357
Jörg Müller and Kerri Vierling

19 Assessing Dead Wood by Airborne Laser Scanning ………………… 375
Matti Maltamo, Eveliina Kallio, Ole Martin Bollandsås, Erik Næsset, Terje Gobakken, and Annukka Pesonen

20 Estimation of Canopy Cover, Gap Fraction and Leaf Area Index with Airborne Laser Scanning …………………………… 397
Lauri Korhonen and Felix Morsdorf
21 Canopy Gap Detection and Analysis with Airborne Laser Scanning .. 419
Benoît St-Onge, Udayalakshmi Vepakomma, Jean-François Sénécal, Daniel Kneeshaw, and Frédérick Doyon

22 Applications of Airborne Laser Scanning in Forest Fuel Assessment and Fire Prevention 439
John Gajardo, Mariano García, and David Riaño

Index .. 463