Molecular and Structural Archaeology: Cosmetic and Therapeutic Chemicals
NATO Science Series

A Series presenting the results of scientific meetings supported under the NATO Science Programme.

The Series is published by IOS Press, Amsterdam, and Kluwer Academic Publishers in conjunction with the NATO Scientific Affairs Division

Sub-Series

I. Life and Behavioural Sciences
II. Mathematics, Physics and Chemistry
III. Computer and Systems Science
IV. Earth and Environmental Sciences
V. Science and Technology Policy

The NATO Science Series continues the series of books published formerly as the NATO ASI Series.

The NATO Science Programme offers support for collaboration in civil science between scientists of countries of the Euro-Atlantic Partnership Council. The types of scientific meeting generally supported are “Advanced Study Institutes” and “Advanced Research Workshops”, although other types of meeting are supported from time to time. The NATO Science Series collects together the results of these meetings. The meetings are co-organized by scientists from NATO countries and scientists from NATO’s Partner countries – countries of the CIS and Central and Eastern Europe.

Advanced Study Institutes are high-level tutorial courses offering in-depth study of latest advances in a field.
Advanced Research Workshops are expert meetings aimed at critical assessment of a field, and identification of directions for future action.

As a consequence of the restructuring of the NATO Science Programme in 1999, the NATO Science Series has been re-organized and there are currently Five Sub-series as noted above. Please consult the following web sites for information on previous volumes published in the Series, as well as details of earlier Sub-series.

http://www.nato.int/science
http://www.wkap.nl
http://www.iospress.nl
http://www.wtv-books.de/nato-pco.htm

Series II: Mathematics, Physics and Chemistry – Vol. 117
Organising Committee:

R.J.H. CLARK Dept. of Chemistry, University College London, London, UK

J. FALSONE Institute of Archaeology, University of Palermo, Italy

J. LIPKOWSKI Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland

G. TSOUCARIS Centre de Recherche et de Restauration des Musées de France, Paris, France

Ph. WALTER Centre de Recherche et de Restauration des Musées de France, Paris, France
The Organising Committee expresses his gratitude to the following sponsors for generous support:

NATO Scientific and Environmental Affairs Division Programme

Association pour la Recherche Scientifique sur les Collections des Musées (ARCOM)

Ministère des Affaires Etrangères, France

Italian Ministry of Education, University and Scientific Research

Sicilian Regional Government

The Organising Committee thanks these persons who devoted their time and energy for an excellent organisation:

Fiorella RUGGIU
Pino ACETO
John I. IRWIN
Federica PETRELLI
Antonio CAVALLARO
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>ix-xi</td>
</tr>
<tr>
<td>Inventing a science of make-up</td>
<td>1-9</td>
</tr>
<tr>
<td>Ph. WALTER</td>
<td></td>
</tr>
<tr>
<td>Etruscan gold dental appliances</td>
<td>11-27</td>
</tr>
<tr>
<td>M.J. BECKER</td>
<td></td>
</tr>
<tr>
<td>Preparation and Use of Perfumes and Perfumed Substances in Ancient Egypt</td>
<td>29-50</td>
</tr>
<tr>
<td>M. El-SHIMY</td>
<td></td>
</tr>
<tr>
<td>Analysis of different materials used in Ancient Egypt</td>
<td>51-52</td>
</tr>
<tr>
<td>N. ISKANDER</td>
<td></td>
</tr>
<tr>
<td>Pigments in Artwork, Cosmetics and Archaeology: The role of Raman Microscopy in their Identification</td>
<td>53-59</td>
</tr>
<tr>
<td>R.J.H. CLARK</td>
<td></td>
</tr>
<tr>
<td>A Multidisciplinary Approach to Pigment Analysis:</td>
<td>61-72</td>
</tr>
<tr>
<td>King’s Yellow and Dragon’s Blood from the Winsor and Newton Pigment Box at the Victoria and Albert Museum</td>
<td></td>
</tr>
<tr>
<td>L. BURGIO, R.J.H. CLARK, G. MARTIN, E. PANTOS & M.A. ROBERTS</td>
<td></td>
</tr>
<tr>
<td>Multispectral Spectroscopy through Tuneable Multispectral Reflectoscopy between 200 nm and 3500 nm</td>
<td>73-83</td>
</tr>
<tr>
<td>Y. CHRYSOULAKIS, CHR. SALPISTIS AND G. KARAGANNIS</td>
<td></td>
</tr>
<tr>
<td>Spectroscopic Techniques for the Investigation of Sicilian Cultural Heritage: two different Applications</td>
<td>85-106</td>
</tr>
<tr>
<td>S. GALLI, G. BARONE, V. CRUPI, D. MAJOLINO, P. MIGLIARDO, and R. PONTERIO</td>
<td></td>
</tr>
<tr>
<td>A Non-Destructive Analysis by Neutron Diffraction inside Make-up Containers Of Ancient Egypt</td>
<td>107-111</td>
</tr>
<tr>
<td>P. MARTINETTO, M. ANNE, E. DOORYHÉÉ, O. ISNARD, P. WALTER</td>
<td></td>
</tr>
<tr>
<td>Unveiling the structure of ancient lead pigments. Example of «lead white»</td>
<td>113-118</td>
</tr>
<tr>
<td>P. MARTINETTO, M. ANNE, E. DOORYHÉÉ, P. WALTER AND G. TSOUCARIS</td>
<td></td>
</tr>
<tr>
<td>MOSSBAUER Spectra of two ancient ceramic products from Moldova</td>
<td>119-122</td>
</tr>
<tr>
<td>C. TURTA, S.A. BOBCOVA and V. MEREACRE</td>
<td></td>
</tr>
</tbody>
</table>
Chemical Reactivity of Molecular Systems in Media Organized at the Molecular Level
Ch. AMATORE

Is Supramolecular Organisation a Key Factor for Long Term Preservation?
G. TSOUCARIS, L. BERTRAND and Ph. WALTER

Asru, an Ancient Egyptian Temple Chantress: Modern Spectrometric studies as Part of the Manchester Egyptian Mummy Research Project
A.R DAVID and V. GARNER

Metal Threads in Historical Textiles
M. JARÓ

New Synchrotron Radiation-based Imaging Techniques and Archaeology
J. DOUCET

The Use of Focussed X-Ray Beams for non-Destructive Characterization of Historical Materials
K.H. JANSSENS, K. PROOST, I. DE RAEDT, E. BULSKA, B. WAGNER and M. SCHREINER

Advances in Art and Archaeology Using X-Ray Synchrotron Radiation
E. DOORYHÉE

Microstructure Determined by X-ray Diffraction Peak Profile Analysis: a Fingerprint in Archaeology
T. UNGÁR, P. MARTINETTO, G. RIBÁRIK, E. DOORYHÉE, PH. WALTER and M. ANNE

SR-based Molecular Speciation of Archaeomaterials

Recent Achievement and Perspectives in Synchrotron Radiation X-ray Absorption Spectroscopy
J. PURANS, S.BÉNAZETH, and CH. SOULEAU

The Emergence of Pathogenic Bacteria and their Impact on Human Civilization: the Case of Plague Bacillus, *Yersinia pestis* Infectious diseases and human civilization
T. STEPKOWSKI and A.B. LEGOCKI

Supramolecular Chemistry, Chirality and ... Archaeology
J. LIPKOWSKI and M. ASZTEMBORSKA
Invisible in Archaeological Ceramics: Research Problems
A. BUKO

Molecular Characterisation of Materials: a New Challenge for Analytical Chemistry
J. P. MOHEN

SUBJECT INDEX
PREFACE

Recent progress in the analysis and structural characterisation of materials has an increasing impact on studies of archaeological specimens. A need to embody such research into a new interdisciplinary field has appeared. In this ARW we intended to bring together archaeologists and historians with physicists, chemists, crystallographers and pharmacists, around the theme of structural information on complex archaeological materials. Within this vast area, the ARW has mainly focused on cosmetic-therapeutic chemicals. The objectives of this NATO ARW were twofold:

- Delineating the contour of molecular and structural archaeology as an emerging interdisciplinary field based on structural analysis at the molecular level.

- Examining novel methodologies to reconstruct the scenario of synthesis and transformation in the long term of compounds used in antiquity for health and beauty.

The strong interdisciplinarity of this meeting has been greatly favoured by the NATO ARW organisation allowing the mixing of different fields and disciplines with convergent general goals. This Workshop has shown that the molecular and structural sensibility is a powerful tool towards the setting, and often the solution, of difficult archaeological and historical problems. Ten different nationalities (Europe, Egypt, USA) were represented in the ARW, and this mixing has contributed to the large range of subjects and archaeological contexts. Thus, a mutual interaction between Archaeology and Physical Sciences is expected. The most obvious part is associated with extended use of any possible technique and method to get as much information about the archaeological samples as possible. However, there is its counterpart in the sense that chemistry and physics can learn from samples which are thousands of years old. The long-term transformations of physicochemical systems may be studied in this perspective. It seems we are at the infancy of that approach to the science of ancient materials.

Recent advances in analytical chemistry and crystallography open new perspectives in the study of complex materials and preparations. Many cosmetic-therapeutic materials both inorganic and organic, found in closed vessels in ancient tombs have been completely identified. In this particular study, the molecular and structural information has revealed that the Ancients had developed as early as 2000 BC the technology needed to synthesise these materials, such as wet chemical syntheses of new compounds not known as natural products. This chemical technology was followed by an art of formulation. Nonetheless, the resulting preparations may have been cosmetic or therapeutic, yet their use may also have been associated with ultimately adverse effects on the whole of society, such as long-term lead poisoning.
It is important at this point to enquire about each compound bearing information relating to the time at which it was created and used. The reference to archaeological data and ancient texts is crucial in tracing down this historical information.

Such a shifting from technological and pharmaceutical problems to the history of societies should be the goal of an interdisciplinary debate. The incidence of the recorded physical and chemical data at the molecular level may lead to an important distinction between an *a priori* historical interpretation (i.e. without these data) and an *a posteriori* historical interpretation (i.e. given these data) in a particular archaeological context.

The original objects may also undergo their own materials history at the atomic and molecular level. This consists of alteration or reaction with other compounds, or simply conservation on account of exceptional circumstances. Even if alteration occurs this may not imply total destruction and erasure of all information. The genesis of a new compound may not preclude the retention of significant morphological characteristics of the original one, as illustrated by the beautiful example of mineralised fabrics (slow mineral formation keeping the texture of the initial biological material). Modern methods are able to analyse the supramolecular organisation of materials as complex as wool, hair or skin. Here, we have to take into account the archaeological periods of time as a "fourth dimension in chemistry" measured in centuries and millennia, in order to approach the significance of the "molecular messenger" as found at the present time. Many difficult problems arise from the complex alteration of the initial materials - and sometimes from a surprising stability, for instance, in the conservation of structurally organised unsaturated fatty acids. One could stress the difficulty of designing a type of simulation experiments to shed light on the long term alterations. Such new problems emerging in the course of analysis and structural characterisation may often be at the frontier of the today's technologies and even at the edge of current scientific concepts. It is then indispensable to undertake fundamental research that would push further the limits of the available methods. Moreover, the complexity of many materials is such that a single technique is not sufficient: discussion of upgrading and combining novel methodologies will be an objective of this ARW, including Crystallography, Synchrotron Radiation Techniques, Raman and Infrared Microscopy and Cartography, Analytical Chemistry, and others. One should stress the role of non-destructive methods in the identification of archaeological objects.

Clearly, such research work relies strongly upon structural information at the molecular and supramolecular level. In particular, simulation experiments for long-term transformations involving an artificially accelerated ageing process carried on in the laboratory should be based on a precise knowledge of the structural, physical and chemical phenomena occurring at the molecular and atomic scale. For instance: oxido-reduction phenomena; diffusion of metal ions into specific sites in wool, hair and skin; loss of crystallinity, or, on the contrary, long-term
crystallisation, or more generally variation of the degree of order and supramolecular organisation; crystalline imperfections consecutive to carving, grinding, crushing and annealing (revealed by microstructural characterisation). Thus, the nature of the initial materials and the techniques necessary to their preparation by the Ancients may become accessible, and ultimately related to an archaeological context and to the History of Societies. Hence we feel the need for a dialogue between physicists and chemists with archaeologists and historians. Furthermore, recording and discussing progress in these areas will contribute to new advances in Conservation Science.

Similar advances have recently been recorded in other areas involving “molecular messengers”. In the proposed ARW we endeavour to delineate a contour of Molecular and Structural Archaeology where future meetings could focus on DNA and other biological investigations, food remnants, binders, varnishes, pigments, and others.

Four themes have been highlighted in the present ARW:

1. Reconstruction of a scenario of synthesis and production of substances for health and beauty

2. Methodology for physical and chemical analyses

3. Long run transformation of ancient materials as a “fourth dimension” in molecular and supramolecular chemistry.; simulation experiments

4. Delineating a contour of Molecular and Structural Archaeology as an emerging interdisciplinary field based on structural analysis at the atomic level.

The present Advanced Research Workshop ARW is the first activity of a new School “Molecular and Structural Archaeology” created at the Ettore Majorana Centre and directed by Professor Hubert CURIEN, president of the Académie des Sciences.

The ARW was run in parallel with the 33rd Course of the Crystallography School. The organisation of the ARW has been greatly facilitated by the support of Dr Nera BORKAKOTI, director of the Crystallography Course, and Professor Sir Tom BLUNDELL, director of the Crystallography School, as well as by the experience and skills of Professors Lodovico RIVA DI SANSEVERINO and Paola SPADON.

Georges Tsoucaris
Janusz Lipkowski