Hydraulic fracturing and geothermal energy
Monographs and textbooks on mechanics of solids and fluids
Editor-in-chief: G.Æ. Oravas

Mechanics of elastic and inelastic solids
Editor: S. Nemat-Nasser

Books published under this series are:

1. G.M.L. Gladwell
 Contact problems in the classical theory of elasticity
2. G. Wempner
 Mechanics of solids with applications to thin bodies
3. T. Mura
 Micromechanics of defects in solids
4. R.G. Payton
 Elastic wave propagation in transversely isotropic media
5. S. Nemat-Nasser, H. Abé, S. Hirakawa (Eds.)
 Hydraulic fracturing and geothermal energy
Hydraulic fracturing and geothermal energy

Edited by

Siavouche Nemat-Nasser
Professor of Civil Engineering and Applied Mathematics
Northwestern University, Evanston, Illinois, U.S.A.

Hiroyuki Abé
Professor of Mechanical Engineering
Tohoku University, Sendai, Japan

Seiichi Hirakawa
Professor of Mineral Development Engineering
University of Tokyo, Tokyo, Japan
Distributors

for the United States and Canada: Kluwer Boston, Inc., 190 Old Derby Street, Hingham, MA 02043, USA
for all other countries: Kluwer Academic Publishers Group, Distribution Center, P.O.Box 322, 3300 AH Dordrecht, The Netherlands

Library of Congress Cataloging in Publication Data

Main entry under title:

Hydraulic fracturing and geothermal energy.

(Mechanics of elastic and inelastic solids ; 5)
"Japan-United States seminar in Tokyo sponsored by Japan Society for the Promotion of Science, United States National Science Foundation; symposium in Sendai sponsored by Mining and Metallurgical Institute of Japan (MMIJ), the Geothermal Research Society of Japan, Japan Geothermal Energy Association and New Energy Foundation."
TJ280.7.H93 1983 621.44 83-8325
ISBN 90-247-2855-X
DOI: 10.1007/978-94-009-6884-4

Book information

Japan-United States Seminar in Tokyo
Sponsored by Japan Society for the promotion of Science
United States National Science Foundation

Symposium in Sendai
Sponsored by Mining and Metallurgical Institute of Japan (MMIJ)
The Geothermal Research Society of Japan
Japan Geothermal Energy Association and New Energy Foundation

Copyright

Softcover reprint of the hardcover 1st edition 1983

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publishers,
Martinus Nijhoff Publishers, P.O. Box 566, 2501 CN The Hague, The Netherlands.
Hydraulic fracturing has been and continues to be a major technological tool in oil and gas recovery, nuclear and other waste disposal, mining and particularly in-situ coal gasification, and, more recently, in geothermal heat recovery, particularly extracting heat from hot dry rock masses. The understanding of the fracture process under the action of pressurized fluid at various temperatures is of fundamental scientific importance, which requires an adequate description of thermomechanical properties of subsurface rock, fluid-solid interaction effects, as well as degradation of the host rock due to temperature gradients introduced by heat extraction.

Considerable progress has been made over the past several years in laboratory experiments, analytical and numerical modeling, and in-situ field studies in various aspects of hydraulic fracturing and geothermal energy extraction, by researchers in the United States and Japan and also elsewhere. However, the results have been scattered throughout the literature. Therefore, the time seemed ripe for bringing together selected researchers from the two countries, as well as observers from other countries, in order to survey the state of the art, exchange scientific information, and establish closer collaboration for further, better coordinated scientific effort in this important area of research and exploration.

This book is the proceedings of the First Japan-United States Seminar on Hydraulic Fracturing and Geothermal Energy, held in Tokyo, November 2-5, 1982, under the auspices of the Japan Society for the Promotion of Science, with assistance by the Mining and Metallurgical Institute of Japan (MMIJ), and the National Science Foundation of the United States. It also includes the proceedings of a post-seminar Symposium on Fracture Mechanics Approach to Hydraulic Fracturing and Geothermal Energy, held at Tohoku University in Sendai, November 8-9, 1982.

The Seminar focused attention on the following four related and complementary areas:

1. Subsurface structure and hydraulic fracturing.
2. Rock mass properties in the presence of pressurized fluid at elevated temperatures.
3. Mapping of subsurface fractures.
4. Simulation of geothermal reservoirs.

These research areas bear strongly on all technological activities that require hydraulic fracturing, e.g. nuclear waste disposal, gas, oil, and coal recovery and mining, and in-situ coal gasification. While these applications were not ignored, greater emphasis was placed on geothermal heat extraction processes, including both "wet" and "dry" heat reservoirs.

Both the United States and the Japanese sponsoring agencies restrict the number and the distribution of the participants in this kind of seminar. Therefore, the scientific committee made a serious
effort to include a representative cross-section of scientists from universities, industry, and government laboratories. As a result, the seminar, as well as the post-seminar symposium, provided an excellent forum for scientific exchange between the two countries and observers from France, Germany, and Australia. While the participants obtained better appreciation of the scientific achievements in hydraulic fracturing, geothermal energy extraction processes, and related topics, they also developed international friendship and closer relations with their peers, which we expect will bear significant fruit for many years to come. The present book, which includes the articles presented at the meetings, is published in an effort to disseminate some of the latest achievements in hydraulic fracturing, rock mechanics, and mining of the earth's heat energy.

We wish to thank the United States National Science Foundation and the Japan Society for the Promotion of Science who provided support for the Seminar. We also thank the Mining and Metallurgical Institute of Japan (MMIJ), the Geothermal Research Society of Japan, Japan Geothermal Energy Association, the New Energy Foundation, and the New Energy Development Organization for sponsoring the Sendai Symposium and for their assistance with the two meetings. The support of many Japanese industries is also gratefully acknowledged.

In addition, we are grateful to Mr. Satoru Suda, Secretary General of MMIJ, and his two charming secretaries who, with the help of the MMIJ staff, selflessly assisted and artfully coordinated many necessary details. Also, thanks are due to Professors Kazuo Hayashi, Toshio Kawashima, Hideaki Niitsuma, and Hideaki Takahashi of Tohoku University, who helped with the local organization of the meetings. Finally, we wish to thank Mrs. Erika Ivansons and Mrs. Éva Nemat-Nasser, who helped with the coordination of this book and with various editorial tasks.

Siavouche Nemat-Nasser
Northwestern University

Hiroyuki Abé
Tohoku University

Seiichi Hirakawa
University of Tokyo
TABLE OF CONTENTS

Preface .. V
Summary .. X

FIRST JAPAN-UNITED STATES JOINT SEMINAR ON HYDRAULIC FRACTURING
AND GEOTHERMAL ENERGY, Tokyo, Japan, November 2-5, 1982

Special Presentations

Geothermal Energy Development in Japan (General Lecture)
J. Suyama and K. Ogawa ... 1

Thermally Induced Cracks and Heat Extraction from Hot
Dry Rocks (General Lecture)
S. Nemat-Nasser ... 11

Hot Dry Rock Reservoir Development and Testing in the USA
H. Murphy ... 33

The Falkenberg Geothermal Frac-Project: Concepts and
Experimental Results
F. Rummel and O. Kappelmeyer ... 59

Shallow Depth Experimentation on the Concept of Energy
Extraction from Deep Hot Dry Rocks
F. H. Cornet, J. M. Hosanski, F. Bernaudat, and E. Ledoux 75

Topic 1: Subsurface Structure and Hydraulic Fracturing

Hydraulic Fracturing Experiment at Nigorikawa and Fracture
Mechanics Evaluation
K. Nakatsuka, H. Takahashi, and M. Takanohashi 95

Breakdown Pressure Prediction in Hydraulic Fracturing at
the Nigorikawa Geothermal Field
K. Sato, M. Takanohashi, and K. Katagiri 113

The Influence of Subsurface Conditions on Hydraulically
Induced Fractures in Deep Rocks
A. S. Abou-Sayed ... 125

Evaluation of Artificial Fracture Volume Based on Vented
Water at Yakedake Field
H. Hayamizu and H. Kobayashi .. 145

Propagation of Hydraulic Fracture and Its Conductivity in
Layered Media
A. A. Daneshy ... 159

Hydraulic Fracturing in Geological Processes: A Review
T. Shoji and S. Takenouchi .. 175
Topic 2: Rock Mass Properties in the Presence of Pressurized Fluid at Elevated Temperatures

A Method of Estimating Underground Temperature from a Solution of Iterative Least-Squares Interpretation of Schlumberger's Resistivity Sounding Curves in Geothermal Fields
- S. Onodera ... 191

Measurements of In-situ Stress, Fracture Distribution, Permeability, and Sonic Velocity
- M. D. Zoback ... 205

Measurement of Tectonic Stress by Hydraulic Fracturing in Japan
- H. Ito ... 219

Rock Mass Behavior Coupled with Pressurized Water Flowing Through the Fracture
- Y. Mizuta and C. Fairhurst 233

An Assessment of the Factors Affecting Hydraulic Fracture Containment in Layered Rock: Observations from a Mineback Experiment
- L. W. Teufel and N. R. Warpinski 251

Theory and Application of Hydraulic Fracturing Technology
- M. P. Cleary ... 267

Fracture Toughness Evaluation of Rocks in the Presence of Pressurized Water at Elevated Temperature
- H. Takahashi .. 291

Topic 3: Mapping of Subsurface Fractures

Application of Seismic Inverse Methods to Mapping of Subsurface Fractures
- N. Bleistein and J. K. Cohen 307

Detection of the Newly Formed Fracture Zone by the Seismological Method
- K. Yuhara, S. Ehara, and H. Kaieda 317

Strike-Dip Determination of Fractures in Drillcores from the Otake-Hatchobaru Geothermal Field
- M. Hayashi and T. Yamasaki 331

Hydraulic Fracturing and Fracture Mapping at Yakedake Field
- S. Suga and T. Itoh 343

In-situ AE Measurement of Hydraulic Fracturing at Geothermal Fields
Topic 4: Simulation of Geothermal Reservoirs

Experimental Studies on Heat Extraction from Fractured Geothermal Reservoirs
 P. Kruger ... 373

Simulation of Transient Pressure Behavior in a Fractured Geothermal Reservoir
 S. Yamaguchi and S. Hirakawa 399

Influence of Preexisting Discontinuities on the Hydraulic Fracturing Propagation Process
 J.-C. Roegiers, J. D. McLennan, and D. L. Murphy 413

Geothermal Reservoir Simulation for Water Dominant Fractured Reservoir
 S. Hirakawa, S. Wada, and T. Tanakadate 431

Crack-Like Reservoir in Homogeneous and Inhomogeneous HDR
 H. Abé and H. Sekine 447

SYMPOSIUM ON FRACTURE MECHANICS APPROACH TO HYDRAULIC FRACTURING AND GEOTHERMAL ENERGY, Sendai, Japan, November 8-9, 1982

Applications of Rock Fracture Mechanics
 M. P. Cleary ... 463

A Reservoir Created by Injection of Fluid on a Fault for the Extraction of Geothermal Heat
 K. Hayashi and H. Abé 477

Application of Laboratory Fracture Mechanics Data to Hydraulic Fracturing Field Tests
 F. Rummel and R. B. Winter 493

Finite Element Treatment of Singularities for Thermally Induced Crack Growth in HDR
 Y. Sumi .. 503

Growth of Microcracks in Rocks, and Load-Induced Anisotropy
 S. Nemat-Nasser and H. Horii 519
SUMMARY

It is useful to provide a summary of the proceedings of the First Japan-United States Seminar on Hydraulic Fracturing and Geothermal Energy, and the associated post-seminar Symposium on Fracture Mechanics Approach to Hydraulic Fracturing and Geothermal Energy. However, the range of interdisciplinary topics covered by the participants renders the task essentially impossible. The pre-printed lectures included contributions ranging from the most fundamental study of rock fracture and properties to the geological subsurface structure of geothermal reservoirs and the associated design procedures for effective heat extraction. Balanced theoretical and laboratory experimental results were presented. Therefore, so many significant technical points were examined that identification of individual contributions would not be possible in the form of a short summary. It was therefore decided to restrict comments to a brief survey of the diverse nature and status of the main subject of the seminar, namely "hydraulic fracturing and geothermal energy." To provide an overview, Fig. 1 was prepared. Though possibly deficient in draftsmanship, we trust it will accentuate the major areas that were discussed at the two meetings. The following comments may help to bring out some of the features implied by this illustration.

Subsurface Structure and Hydraulic Fracturing: The feasibility of a fracture mechanics approach to the design of hydraulic fracturing in geothermal applications was extensively discussed, though no consensus on a design philosophy was achieved.

Rock Mass Properties in the Presence of Water at High Temperatures: The significance of experimental investigations of rock fracture behavior in the presence of water at high temperatures was demonstrated. It was emphasized that the experimental procedure for determining the fracture toughness of rocks urgently requires standardization.

Fracture Mapping: Hot dry rock geothermal energy extraction requires accurate fracture mapping. Refined three-dimensional mapping techniques must be developed, in order to provide detailed subsurface data.

Simulation of Geothermal Reservoirs: Theoretical models of reservoirs were extensively discussed, with the main focus on three-dimensional cracks in layered subsurface media and in geological faults. In addition, theoretical and experimental results on growth regimes, stability, and general configurations of thermally induced cracks in hot dry rock masses were discussed, and their relation to the efficiency and life expectancy of the reservoir was considered.

In reference to Fig. 1, one observes a crowd of rock mechanicians, geoscientists, and geothermal engineers making unintelligible noises when they do not fully comprehend what Mother Nature seems to be suggesting to them. Nonetheless, some in the crowd have come away better informed and certainly inspired, as a result of the Seminar and the follow-up Symposium.

Hiroyuki Abe
Hideaki Niitsuma
Hideaki Takahashi
Tohoku University