Direct and Large-Eddy Simulation VIII
Aims and Scope of the Series

ERCOFTAC (European Research Community on Flow, Turbulence and Combustion) was founded as an international association with scientific objectives in 1988. ERCOFTAC strongly promotes joint efforts of European research institutes and industries that are active in the field of flow, turbulence and combustion, in order to enhance the exchange of technical and scientific information on fundamental and applied research and design. Each year, ERCOFTAC organizes several meetings in the form of workshops, conferences and summerschools, where ERCOFTAC members and other researchers meet and exchange information.

The ERCOFTAC Series will publish the proceedings of ERCOFTAC meetings, which cover all aspects of fluid mechanics. The series will comprise proceedings of conferences and workshops, and of textbooks presenting the material taught at summerschools.

The series covers the entire domain of fluid mechanics, which includes physical modelling, computational fluid dynamics including grid generation and turbulence modelling, measuring-techniques, flow visualization as applied to industrial flows, aerodynamics, combustion, geophysical and environmental flows, hydraulics, multiphase flows, non-Newtonian flows, astrophysical flows, laminar, turbulent and transitional flows.

For further volumes:
www.springer.com/series/5934
Preface

Simulation of turbulent flow by means of direct numerical simulation (DNS) and large-eddy simulation (LES) started almost fifty years ago. Probably the earliest paper on the application of LES was by Smagorinsky in the March 1963 issue of Monthly Weather Review. Although Smagorinsky did not mention the term large-eddy simulation explicitly, he proposed a model to represent the effects of small-scale eddies on the large-scale dynamics of the flow, which was treated explicitly. Smagorinsky applied his now famous model to the simulation and study of the dynamics of the general circulation in the earth’s atmosphere.

Direct numerical simulation of wall-bounded flows started some twenty years later with the well-known 1987 paper in the Journal of Fluid Mechanics by Kim, Moin and Moser on DNS of turbulent channel flow at a bulk Reynolds number of 3300. Although DNS had been applied before on homogeneous, isotropic turbulence and some preliminary studies on under-resolved channel flow had been performed, this paper presented the first fully resolved DNS of a wall-bounded turbulent flow. The large number of citations reported on Web of Science proves the tremendous impact both papers had and still have on research in turbulence.

The continuing growth of computational power has increasingly stimulated the usage of DNS and LES, since LES and in some applications even DNS can now be used as a design tool for several practical and industrial problems. This is reflected by the possibility of CFD software packages to perform LES, although this should still be treated with care. On the other hand, for flow in simple geometries, such as channel flow, DNS has been extended to higher and higher Reynolds numbers, which brings the study of fundamental properties of turbulent flow at large Reynolds numbers within reach. These examples highlight the two major reasons for usage of DNS and LES: application-driven research and fundamental research into the nature of turbulence and into turbulence models.

The history of this research over the past two decades can well be grasped from the contents of the ERCOFTAC series of Workshops on Direct and Large-Eddy Simulation. This series started in 1994 and, with intervals of approximately two years, has led to the eighth DLES workshop organized at Eindhoven University of Technology in July 2010. Like the previous editions, this workshop has been formatted
around approximately ten invited contributions in different areas of DNS and LES, ranging from fundamental properties to industrial applications and treating various application areas, such as two-phase flow, environmental flow and combustion. Around 70 of the submitted abstracts have been selected for oral presentation during the workshop.

Most of the invited and contributed papers have been submitted to be included in the Proceedingsof DLES8 and after a careful review procedure most of them can be found in this volume. The papers are grouped in themes, with slight re-ordering compared to the program of the workshop. The contributions provide a broad overview of the most important current issues and application areas of DNS and LES. Fundamental issues related to the usage of LES and the development of subgrid models are still an important research topic. Contributions to this topic can be found in the first two parts of the Proceedingson fundamentals and on methodologies and modeling techniques. These two parts also contain contributions on fundamental studies of turbulent flow and on numerical issues, such as novel numerical techniques.

During the workshop two special sessions were held. One centered around Lagrangian turbulence and had been planned long before the start of the workshop. The other was a result of the submitted abstracts. It appeared that the number of abstracts on Rayleigh-Bénard flow justified a special session devoted to this topic. The contributions in the session on Lagrangian turbulence were regrouped in Part III on multiphase flow, together with more general contributions on two-phase flow. The contributions on Rayleigh-Bénard flow were allocated a separate part in the Proceedings. The remaining three parts of the Proceedings are devoted to the application areas environmental flows, compressible and reactive flows and industrial applications. Each of these application areas was discussed by an invited presentation as well.

The organization of the ERCOFTAC DLES VIII Workshop and the preparation of this Proceedingss would not have been possible without the support of many. We gratefully acknowledge financial support from Eindhoven University of Technology, TU/e, the Royal Netherlands Academy of Sciences, KNAW, Universiteitsfonds Eindhoven, UFe, the Netherlands Research School on Fluid Mechanics, J.M. Burgerscentrum and the Netherlands Organisation for Scientific Research, NWO. The European Research Community on Flow, Turbulence and Combustion, ERCOF-TAC, enabled the attendance and contribution of many young scientists to DLES8 by making available scholarships to 39 PhD students. We also thank the members of the Scientific Committee of DLES8 for their contribution to the reviewing process of the papers.

Eindhoven,
March, 2011

Hans Kuerten
Bernard Geurts
Vincenzo Armenio
Jochen Fröhlich
Contents

Part I Fundamentals

Direct simulations of wall-bounded turbulence 3
Javier Jiménez and Ricardo García-Mayoral

Structure of a turbulent boundary layer studied by DNS 9
Philipp Schlatter, Qiang Li, Geert Brethouwer, Arne V. Johansson,
Dan S. Henningson

A physical length-scale for LES of turbulent flow 15
Ugo Piomelli, Bernard J. Geurts

Regularization modeling of buoyancy-driven flows 21
F.X. Trias, A. Gorobets, A. Oliva, R.W.C.P. Verstappen

On the relevance of discrete test-filtering in the integral-based dynamic
modelling .. 27
Filippo Maria Denaro

Hybrid assessment method for LES models 33
Cassart Benjamin, Teaca Bogdan, Carati Daniele

Time-reversibility of Navier-Stokes turbulence and its implication
for subgrid-scale models .. 39
L. Fang, W.J.T. Bos, L. Shao and J.-P. Bertoglio

Shearless turbulence - wall interaction: a DNS database for second-order
closure modeling ... 45
J. Bodart, L. Joly and J.-B. Cazalbou

Anisotropic dynamics in filtered wall-turbulent flows 51
A. Cimarelli and E. De Angelis
Large Eddy Simulations of high Reynolds number cavity flows 57
Xavier Gloerfelt

Part II Methodologies and Modeling Techniques

On the development of a 6th order accurate compact finite difference
scheme for incompressible flow ... 65
Bendiks Jan Boersma

A multilevel method applied to the numerical simulation of two-
dimensional incompressible flows past obstacles at high Reynolds
number ... 71
François Bouchon, Thierry Dubois and Nicolas James

Large eddy simulation with adaptive r-refinement for the flow over
periodic hills .. 77
Claudia Hertel and Jochen Fröhlich

An eddy-viscosity model based on the invariants of the rate-of-strain
tensor ... 83
Roel Verstappen

LES modeling of the turbulent flow over an Ahmed car 89

Spatially Variable Thresholding for Stochastic Coherent Adaptive LES . 95
AliReza Nejadmalayeri, Oleg V. Vasilyev, Alexei Vezolainen,
and Giuliano De Stefano

Stochastic coherent adaptive LES with time-dependent thresholding 101
Giuliano De Stefano and Oleg V. Vasilyev

Mixed subgrid scale models for classical and variational multiscale
large-eddy simulations on unstructured grids 107
Maria Vittoria Salvetti, Hilde Ouvrard, Bruno Koobus and Alain Dervieux

Subgrid-Scale Model and Resolution Influences in Large Eddy
Simulations of Channel Flow ... 113
Amin Rasam, Geert Brethouwer and Arne V. Johansson

Immersed Boundaries in Large-Eddy Simulation of a transonic
cavity flow .. 119
C. Merlin, P. Domingo and L. Vervisch

Numerical study of turbulent-laminar patterns in MHD, rotating
and stratified shear flows .. 125
G. Brethouwer, Y. Duguet and P. Schlatter
Comparison of SGS Models for Passive Scalar Mixing in Turbulent Channel Flows .. 131
Qiang Li, Philipp Schlatter and Dan S. Henningson

Improved wall-layer model for forced-convection environmental LES 137
V. Stocca, V. Armenio and K. R. Sreenivasan

The effect of noise on optimal perturbations for turbulent mixing 143
Sara Delport, Martine Baelmans, Johan Meyers

Part III Multiphase Flows

Direct and Large Eddy Simulation of Two-Phase Flows with Evaporation 151
Josette Bellan

Influence of Particle-Wall Interaction Modeling on Particle Dynamics in Near-Wall Regions of Turbulent Channel Down-Flow 165
A. Kubik and L. Kleiser

On the Error Estimate in Sub-Grid Models for Particles in Turbulent Flows ... 171
E. Calzavarini, A. Donini, V. Lavezzo, C. Marchioli, E. Pitton, A. Soldati
and F. Toschi

Benchmark test on particle-laden channel flow with point-particle LES . . 177
C. Marchioli, A. Soldati, M.V. Salvetti, J.G.M. Kuerten, A. Konan,
P. Fede, O. Simonin, K.D. Squires, C. Gobert, M. Manhart, M. Jaszczur,
L.M. Portela

On large eddy simulation of particle laden flow: taking advantage of spectral properties of interpolation schemes for modeling SGS effects . 183
Christian Gobert and Michael Manhart

DNS of a free turbulent jet laden with small inertial particles 189
F. Picano, G. Sardina, P. Gualtieri and C.M. Casciola

A numerical simulation of the passive heat transfer in a particle-laden turbulent flow ... 195
Marek Jaszczur

Effect of evaporation and condensation on droplet size distribution in turbulence ... 201
Briti S. Deb, Lilya Ghazaryan, Bernard J. Geurts, Herman J.H. Clercx,
J.G.M. Kuerten and Cees W.M. van der Geld

Reduced turbophoresis in two-way coupled particle-laden flows 207
D.G.E. Grigoriadis and B.J. Geurts
Development of a particle laden pipe flow: implications for evaporation . . 213
G. Sardina, F. Picano, P. Gualtieri, C.M. Casciola

Direct numerical simulation of binary-species mixing layers 219
M. Pezeshki, K.H. Luo and S. Gu

Direct Numerical Simulation of a Buoyant Droplet Array 225
Marcel Kwakkel, Wim-Paul Breugem and Bendiks Jan Boersma

Part IV Environmental Flows

LES modeling and experimental measurement of boundary layer flow
over multi-scale, fractal canopies .. 233
Jason Graham, Kunlun Bai, Charles Meneveau and Joseph Katz

Large Eddy Simulation study of a fully developed thermal wind-turbine
array boundary layer .. 239
Marc Calaf, Charles Meneveau and Marc Parlange

Coherent Structures in the Flow over Two-Dimensional Dunes 245
Mohammad Omidyeganeh and Ugo Piomelli

LES of turbulence around a scoured bridge abutment 251
F. Bressan, F. Ballio and V. Armenio

Large Eddy Simulation of a neutral and a stratified flow in a plane
asymmetric diffuser ... 257
F. Roman, S. Sarkar, V. Armenio

Reynolds Number Influence on the Particle Transport in a Model
Estuary ... 263
R. Henniger and L. Kleiser

Dispersal and fallout simulations for urban consequences management . 269
Fernando F. Grinstein, Gopal Patnaik, Adam J. Wachtor, Matt Nelson,
Michael Brown, and Randy J. Bos

On the Mechanisms of Pollutant Removal from Urban Street Canyons:
A Large-Eddy Simulation Approach 275
Chun-Ho Liu, W.C. Cheng, Tracy N.H. Chung and Colman C.C. Wong

Part V Compressible Flows and Reactive Flows

Numerical simulations of shock-wave/boundary-layer interaction
phenomena ... 283
Neil D. Sandham and Emile Touber

DNS of a canonical compressible nozzle flow 291
Richard D. Sandberg, Victoria Suponitsky and Neil D. Sandham
Direct numerical simulations of turbulent supersonic axisymmetric wakes .. 297
Richard D. Sandberg

DNS of a Variable Density Jet in the Supercritical Thermodynamic State . 303
F. Battista, F. Picano, G. Troiani and C.M. Casciola

DNS Study on Control of Turbulent Heat Transfer in Curved Channel . . 309
Takashi Uchida, Koji Matsubara, Takahiro Miura and Atsushi Sakurai

A Priori Assessment of the Potential of Flamelet Generated Manifolds
to Model Lean Turbulent Premixed Hydrogen Combustion 315
A. Donini, R.J.M. Bastiaans, J.A. van Oijen, M.S. Day and L.P.H. de Goey

Numerical Analysis of a Swirl Stabilized Premixed Combustor
with the Flamelet Generated Manifold approach 321
T. Cardoso de Souza, R.J.M. Bastiaans, B.J. Geurts and L.P.H. De Goey

Direct Numerical Simulation of highly turbulent premixed flames
burning methane .. 327
Gordon Fru, Gábor Janiga and Dominique Thévenin

A New Subgrid Breakup Model for LES of Spray Mixing
and Combustion ... 333
S. Srinivasan, E.O. Kozaka and S. Menon

LES Modeling of a Turbulent Lifted Flame in a Vitiated Co-flow Using
an Unsteady Flamelet/Progress Variable Formulation 339
Matthias Ihme and Yee Chee See

Direct Numerical Simulation of a Turbulent Reacting Wall-Jet 345
Zeinab Pouransari, Geert Brethouwer and Arne V. Johansson

Novel Developments in Subgrid-Scale Modeling for Space Plasma.
Weakly compressible Turbulence in the Local Interstellar Medium 351
A.A. Chernyshov, K.V. Karelsky and A.S. Petrosyan

Part VI Rayleigh-Bénard Flow

Numerical simulations of rotating Rayleigh-Bénard convection 359
Richard J.A.M. Stevens, Herman J.H. Clercx, and Detlef Lohse

Direct Numerical Simulation and Lagrangian Particle Tracking
in turbulent Rayleigh Bénard convection 365
H.J.H. Clercx, V. Lavezzo and F. Toschi

Turbulent convection in a Rayleigh-Bénard cell with solid horizontal
plates of finite conductivity ... 371
T. Czarnota and C. Wagner
Non-Oberbeck-Boussinesq effects in three-dimensional Rayleigh-Bénard convection ... 377
Susanne Horn, Olga Shishkina and Claus Wagner

Analysis of the large-scale circulation and the boundary layers in turbulent Rayleigh-Bénard convection ... 383
M. Kaczorowski, O. Shishkina, A. Shishkin, C. Wagner and K.-Q. Xia

On DNS and LES of natural convection of wall-confined flows:
Rayleigh-Bénard convection .. 389
I. Rodríguez, O. Lehmkuhl, R. Borrell and C.D. Pérez-Segarra

Part VII Industrial Applications

The use of Direct Numerical Simulations for solving industrial flow problems ... 397
Claus Wagner, Andrei Shishkin and Olga Shishkina

High-order direct and large eddy simulations of turbulent flows in rotating cavities ... 405
Serre E.

DNS of turbulent flow in a rotating rough channel 413
Vagesh D. Narasimhamurthy and Helge I. Andersson

LES of heated fuel bundle arranged into triangular array 419
S. Rolfo, J. C. Uribe and D. Laurence

Effect of wind-turbine surface loading on power resources in LES of large wind farms .. 425
Johan Meyers and Charles Meneveau

DNS of a turbulent channel flow with pin fins array: parametric study ... 431
B. Cruz Perez, J. Toro Medina, & S. Leonardi

Drag Reduction on External Surfaces Induced by Wall Waves 437
H.C. de Lange and Luca Brandt

Impact of Secondary Vortices on Separation Dynamics in 3D Asymmetric Diffusers ... 443
Hayder Schneider, Dominic von Terzi, Hans-Jörg Bauer and Wolfgang Rodi

Fluid–Structure Interaction of a Flexible Structure in a Turbulent Flow using LES ... 449
M. Breuer, G. De Nayer, M. Münsch