High Performance Fiber Reinforced Cement Composites 6
Dedication

The Sixth International RILEM Conference on High Performance Fiber Reinforced Cement Composites (HPFRCC6) and its proceedings are dedicated to three outstanding members of our international community who have made significant and lasting contributions to broaden the safe application of fiber reinforced cement and concrete composites through fundamental understanding, testing, analysis, modeling and design.

Andrzej M. Brandt

Professor Andrzej Marek Brandt was born on November 15, 1930 in Bydgoszcz, Poland. He graduated from the Warsaw University of Technology, Faculty of Civil Engineering, in 1955, then joined the Institute of Fundamental Technological Research (IFTR) of the Polish Academy of Sciences in Warsaw, where he has been employed ever since. In 1958-1959, he completed advanced studies at the Centre de Hautes Etudes de la Construction in Paris, France. Professor Brandt holds two doctoral degrees, one in 1962, and one, a DSc, in 1967, both from IFTR. He was promoted Associate Professor in 1967 and Full Professor in 1979. His positions included Chairman of the Committee for Civil Engineering of the Polish Academy of Sciences, and Head of the Section on Strain Fields.

Professor Brandt’s main interests have been focused on structural mechanics and bridge design, optimization of structures and materials, strain measurements and analysis, fracture mechanics and mechanics of brittle matrix composites. He is the author or co-author of more than 100 technical papers and 20 books among them a classic titled “Cement Based Composites - Materials, Mechanical Properties and Performance” published in 2009. He has been the main instigator and co-organizer of the continuous series of International Symposia on Brittle Matrix Composites (BMC) in Poland since 1985, a topic that encompasses fiber reinforced cement and concrete composites.

Professor Brandt received an Honorary Doctorate from the University of Paisley, Scotland, in 1997. He was a Visiting Professor at University of Poitiers in France, Delft University of Technology in The Netherlands, Koriyama and Tohoku Universities in Japan, and Drexel and North Carolina State Universities in the USA.
Professor Brandt has been active on numerous scientific committees and technical organizations in Poland and abroad, among them, the Polish Standardization Committee, the Euro-International Concrete Committee (CEB), the International Organization for Standardization (ISO), the American Concrete Institute (ACI) and RILEM. He also served as member of the editorial board of a number of national and international journals.

Professor Brandt is being honored for his contributions to the in-depth understanding of the mechanics of brittle matrix composites and optimization of their properties including high performance fiber reinforced cement composites.

Wei Sun

As a distinguished scholar, Professor Wei Sun has been engaged in teaching and scientific research at Southeast University, China, since her graduation from Nanjing Institute of Technology (previous name of Southeast University) in 1958. During her 53 years of teaching and research, she has supervised more than 60 master students and over 40 doctoral students. Professor Sun is currently director of the institute of fiber reinforced concrete and also director of the Jiangsu Key laboratory for Construction Materials. During her career she also was Head of the Department of Materials Science and Engineering, Southeast University, and deputy editor-in-chief of “Journal of the Chinese Ceramic Society”. Due to her significant contributions to the theory and application of cementitious composites (including preparation, mechanical behavior, microstructure and modeling of ultra high performance fiber reinforced cementitious composites; service life prediction under the coupled action of load and environmental factors), she was selected to be a member of the Chinese Academy of Engineering in 2005. Together with over 20 of her team members, Professor Sun is still very active in research and teaching. With her team, she has successfully carried out over 50 important national or international projects and co-authored more than 400 technical publications.

Professor Sun is being honored for her long-term and numerous contributions to the investigation of HPFRCC materials, specifically their physical, mechanical, and impact properties, as well as their durability modeling.
Pietro G. Gambarova

Pietro G. Gambarova was born in Milan, on September 1st, 1941. He received his MS Degree in Aeronautical Engineering in March 1966 from the Politecnico di Milano. After two periods spent as an officer in the Corps of Engineers of the Italian Air Force (1966-67 and 1971), he joined the Department of Structural Engineering at the Politecnico di Milano, where he held the position of Assistant Professor from 1968 to 1974, Associate Professor from 1975 to 1980, and Full Professor since 1980. He teaches courses on Structural Analysis and Design, Reinforced Concrete Plates and Shells, and Fire Safety of Materials and Structures. He has been visiting professor (1976) at the National Somali University in Mogadisho, visiting scholar (1978 and 1982) at Northwestern University (Evanston, USA) and at EPFL-Ecole Polytechnique Fédérale de Lausanne (2006).

Pietro Gambarova has conducted research on non-destructive analysis of structures and materials, shear and punching shear in R/C, bond mechanics in R/C, high-performance and fiber-reinforced concrete, non-linear analysis of R/C structures, and lately high-temperature degradation of high-performance concrete and R/C structures. He is the author or coauthor of two books on structural analysis and R/C plates, and of more than 180 technical papers. In 2009, he coauthored the translation into Italian of the book “Structural Design for Fire Safety” by Andy Buchanan.

Pietro Gambarova is an active member of several Italian and international technical committees. He chaired the subcommittee for the preparation of the introductory chapter of fib Bulletin No.10 “Bond of Reinforcement in Concrete” (August 2000). He co-organized the workshop “Fire Design of Concrete Structures: What now? What next?” (Milan, December 2004) and the International Conference FraMCoS-6 (Catania, Italy, June 2007). He is one of the authors of fib Bulletin No.46 “Fire Design of Concrete Structures: Structural Behavior and Assessment” (2008).

Professor Gambarova is being honored for his outstanding contributions to the identification of the physical mechanisms that govern the behavior of high performance and fiber reinforced concrete subjected to high temperature, including fire.
HPFRCC6 will be the sixth workshop in a series dealing with High Performance Fiber Reinforced Cement Composites (HPFRCC). The five prior workshops have led to a definition of HPFRCC that mostly suggests a technical challenge. That is, composites that exhibit a strain hardening tensile stress-strain response accompanied by multiple cracking (and relatively large energy absorption capacity). Researchers have tried to reduce fiber content to a necessary minimum. By reducing fiber content, they are simplifying the production process, helping make standard mixing procedures acceptable, and opening the way to large-scale practical applications.

The first international workshop on High Performance Fiber Reinforced Cement Composites took place in June 1991 in Mainz, Germany, under the auspices of RILEM and ACI. It was funded in part by the US National Science Foundation (NSF) and the Deutsche Forschungsgemeinschaft (the German NSF). Other co-sponsors included the center for Advanced Cement Based Materials (ACBM), the University of Michigan, and the University of Stuttgart. The second workshop took place in Ann Arbor, Michigan, in June 1995, the third in Mainz Germany, in June 1999, the fourth in Ann Arbor, Michigan, in June 2003, and the fifth in Mainz, Germany, in July 2007, all supported by the same sponsors. In each case hard-cover proceedings were published as a special RILEM publication. While the first workshop in 1991 included mostly US and German participants, subsequent workshops were opened to top researchers in the field from other countries. The last workshop in Mainz 2007 assembled researchers from 22 countries. The proceedings included 56 papers grouped in 6 different sections.

Since the first workshop in 1991, continuous developments have taken place in new materials, processing, standardization, and improved products for building and other structures. Also, enhanced theory and modeling techniques for HPFRCC now allow a better description of their behavior and reinforcing mechanisms. While in the first workshop HPFRCC implied relatively high fiber volume fractions (over 4%), today HPFRCC can be designed with as little as 1% fiber volume content. While the root definition of HPFRCC is simplest (that is, fiber cement composites with strain hardening and multiple cracking behavior in tension) to clearly differentiate them from other cement composites, this is not the only description of desirable performance. Durability, fire resistance, impact resistance, diffusion resistance, imperviousness, and constructability at reasonable cost are other important attributes that need to be further investigated.
In each workshop, a broad range of technical issues, ranging from microstructure characterization to design recommendations, are typically covered; however, some selected themes are emphasized. In this sixth workshop, the organizers identified the following themes for which research information is needed:

- Composite properties in the fresh and hardened states
- bond and pull-out mechanisms
- durability
- structural elements: design, detailing, shear, tension stiffening
- impact, cyclic and seismic loading
- ultra high performance fiber reinforced concrete
- textile reinforced concrete and hybrid composites.

Papers addressing these themes are grouped in seven separate sections of the proceedings.

The organizers hope that this new volume will help foster the continuous development and increasing utilization of HPFRCC in both stand-alone and structural applications.

G.J. Parra-Montesinos
H.W. Reinhardt
A.E. Naaman
HPFRCC6 - Workshop

Workshop Organization

Co-Chairman: Gustavo J. Parra-Montesinos, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, USA
Co-Chairman: Hans W. Reinhardt, Department of Construction Materials, University of Stuttgart, Germany

Scientific Committee

Chair: P. Balaguru, Rutgers University, USA
Deputy Chair: B. Mobasher, Arizona State University, Tempe, USA

Members

- G. Balazs, Budapest University of Technology, Hungary
- J. Barros, University of Minho, Portugal
- M. Behloul, Lafarge, France
- A. Bentur, Technion - Israel Institute of Technology, Israel
- S. Billington, Stanford University, USA
- J. Bolander, University of California, Davis, USA
- G. Campione, Universita di Palermo, Italy
- G. Chanvillard, Lafarge, France
- S.H. Chao, University of Texas at Arlington, USA
- F. Dehn, University of Leipzig, Germany
- E. Denarié, EPFL, Lausanne, Switzerland
- A. Dubey, USG Corporation, USA
- H. Falkner, IBF Stuttgart, Germany
- E. Fehling, University of Kassel, Germany
- L. Ferrara, Politecnico di Milano, Italy
- M.A. Glinicki, Polish Academy of Sciences, Poland
- P. Hamelin, University of Lyon, France
- W. Hansen, University of Michigan, USA
- A. Katz, Technion, Haifa, Israel
- D.J. Kim, Sejong University, South Korea
• K. Kosa, Kyushu Institute of Technology, Japan
• N. Krstulovic-Opara, ExxonMobil, USA
• A. Lambrechts, Bekaert, Belgium
• V.C. Li, University of Michigan, USA
• M. Lopez de Murphy, Pennsylvania State University, USA
• B. Massicotte, Ecole Polytechnique Montreal, Canada
• V. Mechtcherine, TU Dresden, Germany
• H. Mihashe, Tohoku University, Japan
• H.S. Müller, University of Karlsruhe, Germany
• C. Ostertag, University of California, Berkeley, USA
• A. Peled, Ben Gurion University, Israel
• G. Plizzari, University of Brescia, Italy
• P. Rossi, LCPC, France
• M. Schmidt, University of Kassel, Germany
• P. Serna Ros, Polytechnic University of Valencia, Spain
• Y. Shao, McGill University, Canada
• C. Sujivorakul, King Mongkut’s University of Technology Thonburi, Thailand
• L. Vandewalle, Katholieke Universiteit Leuven, Belgium
• K. Wille, University of Connecticut, USA
• F.H. Wittmann, Aedificat Institute, Freiburg, Germany

International Committee

Chair: A.E. Naaman, University of Michigan, USA
Deputy Chair: M. di Prisco, Politecnico di Milano, Italy

Members

• S.A. Altoubat, University of Sharjah, UAE
• N. Banthia, University of British Columbia, Canada
• W. Brameshuber, RWTH Aachen, Germany
• A.M. Brandt, Polish Academy of Sciences, Poland
• K.P. Chong, National Institute of Standards and Technology, USA
• M. Curbach, Technical University of Dresden, Germany
• G. Fischer, Technical University of Denmark, Lyngby
• H. Fukuyama, Building Research Institute, Tsukuba, Japan
• P. Gambarova, Politecnico di Milano, Italy
• R. Gettu, Indian Institute of Technology, Chennai, India
• M. Harajli, American University of Beirut, Lebanon
• B. Karihaloo, University of Cardiff, UK
• D. Lange, University of Illinois at Urbana-Champaign, USA
• C. Leung, Hong Kong University of Science and Technology, P.R. China
• C. Meyer, Columbia University, USA
• S. Mindess, University of British Columbia, Canada
• B.H. Oh, Seoul National University, Korea
• K.C.G. Ong, National University of Singapore
• K. Rokugo, Gifu University, Japan
• S.P. Shah, Northwestern University, USA
• H. Stang, Technical University of Denmark, Denmark
• L. Taerwe, Ghent University, Belgium
• K.H. Tan, National University of Singapore
• R.D. Toledo Filho, COPPE/UFRJ, Brasil
• T.C. Triantafillou, University of Patras, Greece
• J.C. Walraven, Delft University of Technology, The Netherlands
• J. Wastiels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
• G. van Zijl, University of Stellenbosch, South Africa

Sponsorship

RILEM
American Concrete Institute
University of Michigan
University of Stuttgart
Deutsche Forschungsgemeinschaft, Germany

Local Organization

• Prof. G.J. Parra-Montesinos
• Prof. A.E. Naaman
• Prof. Sherif El-Tawil
• Prof. J.K. Wight
• Prof. W. Hansen
• Ms. S. Brueger

Production Assistant

• S. Stumpp, University of Stuttgart
Acknowledgements

This workshop was sponsored by RILEM (International Union of Laboratories and Experts in Construction Materials, Systems and Structures), and co-sponsored by the University of Michigan, the University of Stuttgart, the American Concrete Institute (ACI) and the Deutsche Forschungsgemeinschaft (DFG). The support of the above organizations is gratefully acknowledged.

The organizers would like to thank all members of the Scientific and International Committees for enthusiastically supporting the organization of this sixth workshop, and all the authors who have contributed with the valuable papers that make these proceedings. Special thanks are due to Ms. Simone Stumpp for preparing with great care and efficiency the camera-ready material for printing. Once more, H.W. Reinhardt and A.E. Naaman would like to express their deep gratitude to the Alexander von Humboldt Foundation for giving them the opportunity to initiate, in 1990, a long-term continually productive cooperation.

G.J. Parra-Montesinos
H.W. Reinhardt
A.E. Naaman
Contents

Dedication

Preface

Workshop

Acknowledgements

Part 1: Composite Properties in the Fresh and Hardened States

Strength Dependent Tensile Behavior of Strain Hardening Fiber Reinforced Concrete .. 3
D.J. Kim, K. Wille, A.E. Naaman, S. El-Tawil

Tailoring SHCC Made of Steel Cords and Plastic Fibers 11
A.P. Fantilli, H. Mihashi, T. Naganuma, T. Nishiwaki

Model of Hooked Steel Fibers Reinforced Concrete under Tension ... 19
C. Sujivorakul

Use of Double Punch Test to Evaluate the Mechanical Performance of Fiber Reinforced Concrete .. 27

Determining Specimen Size Influences on FRC Response Using the Digital Image Correlation Technique .. 35
L.N. Talboys, A.S. Lubell, V.S. Bindiganavile

Connecting Non-destructive Fiber Dispersion Measurements with Tensile HPFRCC Behavior 43
L. Ferrara, M. Faifer, M. Muhaxheri, S. Toscani, R. Ottoboni
Improved Tensile Performance with Fiber Reinforced Self-compacting Concrete .. 51
S. Grünewald, F. Laranjeira, J. Walraven, A. Aguado, C. Molins

The Impact of Rheology on the Mechanical Performance of Steel Fiber-Reinforced Concrete 59
G.P.A.G. van Zijl, S. Zeranka

Quantification of Fresh and Mechanical Properties of HFRCC by Excess Paste Thickness ... 67
H. Mihashi, N. Ishikawa

An Investigation of Mechanical Properties of Jute Fiber-Reinforced Concrete ... 75
J. Kim, C. Park, Y. Choi, H. Lee, G. Song

Back-Calculation of Tensile Properties of Strain Softening and Hardening Cement Composites 83
M. Bakhshi, C. Barsby, B. Mobasher

Basis of a Finite-Element Simulation Tool to Predict the Flexural Behavior of SFRC Prisms ... 91
T. Soetens, S. Matthys, L. Taerwe, A. Van Gysel

Multifunctional Carbon Black Engineered Cementitious Composites for the Protection of Critical Infrastructure 99
M. Li, V. Lin, J. Lynch, V.C. Li

Effects of Fiber Dispersion and Flaw Size Distribution on the Composite Properties of PVA-ECC 107
R. Ranade, M.D. Stults, B. Lee, V.C. Li

Part 2: Bond and Pull-Out Mechanisms

Groups of Physical Parameters Influencing the Three Stages Pull-Out Behavior of Glass Multi-filament Yarns Embedded in Micro-concrete .. 117
H. Aljewifi, B. Fiorio, J.-L. Gallias

Tailor-Made Steel Fiber Reinforced Ultra High Performance Concrete – Single Fiber Pull-Out, Bending Capacity and Fracture Toughness ... 127
T. Stengel, X. Lin, P. Schießl, C. Gehlen

Study on Size Effect in Bond Splitting Behavior of ECC 137
K. Asano, T. Kanakubo
Experimental and Nonlinear Finite Element Analysis of Fiber-Cementitious Matrix Bond-Slip Mechanism 145
C.S. Chin, R.Y. Xiao

Part 3: Durability

Self-healing of Engineered Cementitious Composites in the Natural Environment .. 155
E.N. Herbert, V.C. Li

Resistance to Corrosion Induced Cracking in Self Consolidating Hybrid Fiber Reinforced Concrete 163
G. Jen, C.P. Ostertag

Basic Creep under Compression and Direct Tension Loads of Self-compacting-steel Fibers Reinforced Concrete 171
E. Marangon, R.D. Toledo Filho, E.M.R. Fairbairn

Hot and Residual Behavior of Steel Fiber-Reinforced Structural Shotcrete Exposed to High Temperature 179
P. Bamonte, P.G. Gambarova, A. Nafarieh

Part 4: Structural Elements: Design, Detailing, Shear, Tension Stiffening

Optimization of HPFRCC-Structures with Innovative Computational Methods .. 189
S. Grünwald, M. Flint, H. Han, J. Coenders, J.C. Walraven

Structural Applications of Hybrid Fiber Engineered Cementitious Composites - A Review ... 197
M. Maalej

D-Zones in HPFRC ... 205
M. Colombo, M. di Prisco

Effect of Fiber Reinforced Concrete in Members with Highly Complex Stress Fields ... 213
S.-H. Chao, T. Pareek, D.R. Sahoo

Towards a Design Model for Steel Fiber Reinforced Concrete in Bending .. 221
G.P.A.G. van Zijl, P.B.K. Mbewe

Shear Crack Formation and Propagation in Fiber Reinforced Cementitious Composites (FRCC) 231
I. Paegle, G. Fischer
Effects of Shear Transfer on the Directions of Principal Strain Field in Cracked Concrete with Hooked Steel Fibers 239
B. Suryanto, K. Nagai, K. Maekawa

Mechanical Interaction between Concrete and Structural Reinforcement in the Tension Stiffening Process 247
L. Lárusson, G. Fischer, J. Jönsson

Confinement and Tension Stiffening Effects in High Performance Self-consolidated Hybrid Fiber Reinforced Concrete Composites ... 255
W. Trono, G. Jen, D. Moreno, S. Billington, C.P. Ostertag

Tension-Stiffening in Reinforced High Performance Fiber-Reinforced Cement-Based Composites under Direct Tension .. 263
D.M. Moreno, W. Trono, G. Jen, C. Ostertag, S.L. Billington

Crack Formation in FRC Structural Elements Containing Conventional Reinforcement ... 271
J. Deluce, S.-C. Lee, F.J. Vecchio

Strength and Behavior of SFRSCC and SFRC Wall Panels under One-Way In-Plane Action .. 279
N. Ganesan, P.V. Indira, S. Rajendra Prasad

Part 5: Impact, Cyclic and Seismic Loading

Drop-Weight Impact Response of Glass-Fiber Reinforced Ceramic Concrete ... 289
S.T. Tassew, R. Mutsuddy, V.S. Bindiganavile, A.S. Lubell

Mechanical Behavior of SHCC under Impact Loading 297
V. Mechtcherine, O. Millon, M. Butler, K. Thoma

Shock-Absorbing Blocks Made of HPFRCC for Better Girder-End Structures .. 305

Post-Peak Cyclic Behavior of Steel Fiber Reinforced Concrete under Bending ... 313
F. Germano, G.A. Plizzari

Seismic Strengthening of Piers by Using High Ductility Cement 321
K. Kosa, H. Shimizu, M. Kusano, H. Goda
Contents

Drift Limits of Concrete Frame Members Reinforced with High-performance Steel Bars and Fibers .. 329
H. Tavallali, A. Lepage, J. Rautenberg, S. Pujol

Dynamic Behavior of HPF RCC at High Strain Rate: The Fiber Role .. 339
A. Caverzan, E. Cadoni, M. di Prisco

Beam-Column Connections for Precast Concrete Frames Using High Performance Fiber Reinforced Cement Composites 347
L.F. Maya, L. Albajar

A Summary of Ten Years of Research on HPFRC Coupling Beams .. 355

Part 6: Ultra High Performance Fiber Reinforced Concrete

Size and Shape Effect of UHPFRC Prisms Tested under Axial Tension and Bending ... 365
B. Frettlöhr, K.-H. Reineck, H.-W. Reinhardt

Characterization of Bending and Tensile Behavior of Ultra-high Performance Concrete Containing Glass Fibers 373
S. Rigaud, G. Chanvillard, J. Chen

Strain Rate Dependent Tensile Behavior of Ultra-High Performance Fiber Reinforced Concrete ... 381
K. Wille, S. El-Tawil, A.E. Naaman

Dynamic Properties and Damage Model of Ultra-High Performance Fiber Reinforced Cement Composites Subjected to Repeated Impacts ... 389
J. Lai, W. Sun, S. Xu, C. Yang

CARDIFRC – From Concept to Industrial Application ... 397
B.L. Karihaloo

Static and Dynamic Behavior of Hybrid Precast Bridge Parapet Made of Ultra-High Performance Fiber Reinforced Concrete 405
J.-P. Charron, F. Duchesneau, B. Massicotte

Shear Strength of Ultra High Performance Fiber Reinforced Concrete (UHPFRC) Precast Bridge Joint 413
C.H. Lee, Y.J. Kim, W.J. Chin, E.S. Choi

UHPFRC Bolted Joints: Failure Modes of a New Simple Connection System ... 421
E. Camacho, P. Serna, J.A. López
Rapid Jacketing Technique by Using UHP-SHCC for Damaged RC Column under Seismic Loading .. 429
M. Kunieda, Y. Umeda, N. Ueda, H. Nakamura

Structural Design and Previous Tests for a Retaining Wall Made with Precast Elements of UHPFRC .. 437
J.A. López, P. Serna, E. Camacho

Design for Serviceability of Ultra High Performance Concrete Structures ... 445
T. Leutbecher, E. Fehling

Part 7: Textile Reinforced Concrete (TRC) and Hybrid Composites

Influence of Textile Alignment, Moisture and Shape of Specimens on First Crack Load and Load Bearing Behavior of Textile Reinforced Concrete Containing Short Fibers .. 455
M. Hinzen, A. Hatting, W. Brameshuber

Tensile Behavior of Textile: Influence of Multilayer Reinforcement ... 463
I. Colombo, M. Colombo, A. Magri, G. Zani, M. di Prisco

Optimization of Quasi-isotropic Formulation of Fiber-Cement Laminates: Polar Method and Experimental Validation 471
P. Hamelin, A. Gabor, T.Q. Bach, A. Si Larbi

Bond Behavior of Textile Reinforcements - Development of a Pull-Out Test and Modeling of the Respective Bond versus Slip Relation 479
E. Lorenz, R. Ortlepp

Effect of Short Fibers on the Behavior of Textile Reinforced Concrete under Tensile Loading ... 487
R. Barhum, V. Mechtcherine

High Performance Light-Weight Cement Composite Plates Using Wastepaper Fibers and Wire Mesh 495
C. Sujivorakul, T. Muhummud, N. Dokkhan

Textile Reinforced Cementitious Composites for Retrofit and Strengthening of Concrete Structures under Impact Loading 503

Industrial Processing Technique for Textile Reinforced Cement Composites with Structural Use ... 511
J. Wastiels, O. Remy
A Mixed Pultrusion and Braiding Process Adapted to the Production of High Performance Cement Composite Beams
A. Gabor, P. Hamelin, G. Promis

TRC and Hybrid Solutions for Repairing and/or Strengthening Reinforced Concrete Beams
A. Si Larbi, R. Contamine, P. Hamelin

Hybrid Fiber Reinforcement and Crack Formation in Cementitious Composite Materials
E.B. Pereira, G. Fischer, J.A.O. Barros

Impact Behavior of 3D Fabric Reinforced Cementitious Composites
A. Peled, D. Zhu, B. Mobasher

Author Index

Subject Index