Signal Transduction in Cancer Metastasis
Signal Transduction in Cancer Metastasis

Edited by

Wen-Sheng Wu
Associated Professor, Institute of Medical Biotechnology, College of Medicine, Tzu-Chi University, Hualien, Taiwan

and

Chi-Tan Hu
Associated Professor, Research Center for Hepatology, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
Preface

Cancer remains to be one of the most devastating diseases worldwide since long ago. The poor prognosis of cancer is largely due to metastasis. Metastasis is often depicted as a multistage process in which malignant cells spread from the primary locus to distant organs via circulation. Whereas genetic alterations were suggested to be essential for transformation of primary tumor cells into metastatic phenotype, epigenetic events are equally important, which may be triggered by metastatic factors wherever in the primary tumor locus, blood circulation and the secondary loci. Signal transductions initiated by the metastatic factors are responsible for mediating the molecular and cellular processes leading to metastasis. Blockade of the relevant molecular pathways is one of the most effective strategies for prevention of tumor metastasis. Clinical trials are underway with promising outcome.

In this book, we take comprehensive review in regard with this exciting field of cancer research. Chapter 1 takes a brief overview of recently identified signal mechanisms for each step of tumor metastasis including the initiation stage, intravasation, anti-anoikis in blood circulation, homing, extravasation and final survival in the metastatic site. Chapter 2 makes a completed review for the molecular and cellular events involved in initiation of metastasis. Especially, the signaling mechanisms for mediating tumor progression induced by some important metastatic factors are described. In Chapters 3 and 4, the central roles of MAPK and its downstream effectors MAPKAPK play in each step of tumor metastasis are well delineated. Chapter 5 further describes detailedly about how Grb2 and other adaptor proteins, upstream of MAPK cascade, contribute to metastasis. In Chapter 6, the role of reactive oxygen species (ROS) in tumor progression are highlighted. Moreover, the potential contribution of ROS to cross talk between major signaling cascades that lead to sustained MAPK activation are proposed in Chapter 7. Chapter 8 takes an insight into the signaling mechanisms for dynamic trafficking and turnover of focal adhesion proteins in regulation of traction and retraction forces, which are needed for cell locomotion and invasion. Chapter 9 describes the involvement of Notch signaling pathway which is not only essential for embryonic development but also plays important role in tumor progression. Chapter 10 reviewed the recently identified cancer- and metastasis-initiating cells involved in tumor progression. Especially, signal pathways that are frequently deregulated in cancer stem/progenitor cells...
during cancer progression are highlighted. Chapter 11 describes the role of lipid rafts, a special component within membrane lipid domain, in signal transduction triggered by growth factor receptors leading to tumor metastasis. Finally, Chapters 12, Chapters 13, and Chapters 14 present the signaling pathways responsible for metastatic progression of specific tumors including ovarian cancer, uveal melanoma and hepatoma, respectively.

We hope this book might stimulate more cancer biologists to emphasize this field which benefits devising more effective molecular targeting strategies for prevention of cancer metastasis.

Hualien, Taiwan

Wen-Sheng Wu
Chi-Tan Hu
Contents

1. Overview of Signal Transduction in Tumor Metastasis 1
 Wen-Sheng Wu and Jia-Ru Wu

2. Microenvironment Triggers EMT, Migration and Invasion of Primary Tumor via Multiple Signal Pathways 9
 Wen-Sheng Wu and Chi-Tan Hu

3. The ERK1/2 MAP Kinase Signaling Pathway in Tumor Progression and Metastasis .. 25
 Laure Voisin, Stéphanie Duhamel, and Sylvain Meloche

4. Mitogen-Activated Protein Kinase-Activated Protein Kinases and Metastasis .. 41
 Alexey Shiryaev, Marijke Van Ghelue, and Ugo Moens

5. Grb2 and Other Adaptor Proteins in Tumor Metastasis .. 77
 Alessio Giubellino and Praveen R. Arany

6. The Role of ROS Signaling in Tumor Progression .. 103
 Wen-Sheng Wu and Jia-Ru Wu

7. Signal Cross Talks for Sustained MAPK Activation and Cell Migration Mediated by Reactive Oxygen Species: The Involvement in Tumor Progression .. 119
 Chi-Tan Hu, Jia-Ru Wu, and Wen-Sheng Wu

8. Insights into the Dynamics of Focal Adhesion Protein Trafficking in Invasive Cancer Cells and Clinical Implications .. 137
 Moulay A. Alaoui-Jamali, Krikor Bijian, and Panagiota Toliopoulos

9. Notch Signaling in Cancer Metastasis .. 157
 Pingyu Zhang and Patrick A. Zweidler-McKay
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>New Concepts on the Critical Functions of Cancer- and Metastasis-Initiating Cells in Treatment Resistance and Disease Relapse: Molecular Mechanisms, Signaling Transduction Elements and Novel Targeting Therapies</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Murielle Mimeault and Surinder K. Batra</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Involvement of Lipid Rafts in Growth Factor Receptors-Mediated Signaling for Cancer Metastasis</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Samir Kumar Patra</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Cadherin-Catenin Signaling in Ovarian Cancer Progression</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Lydia W.T. Cheung, Carman K.M. Ip, and Alice S.T. Wong</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PTP4A3, a Signal Molecule Deregulated in Uveal Melanoma Metastasis</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Cécile Laurent, Jérôme Couturier, Xavier Sastre-Garau, Laurence Desjardins, Emmanuel Barillot, Sophie Piperno-Neumann, and Simon Saule</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Signal Transduction Pathways Involved in Hepatocarcinogenesis and Metastasis of Hepatoma</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Rajagopal N. Aravalli</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>283</td>
</tr>
</tbody>
</table>
Contributors

Moulay A. Alaoui-Jamali Faculty of Medicine, Departments of Medicine and Oncology, Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Canada, moulay.alaoui-jamali@mcgill.ca

Praveen R. Arany Harvard University, 49 Oxford Street, 415 ESL, Cambridge, MA 02138, USA, arany@fas.harvard.edu

Rajagopal N. Aravalli Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 54455, USA, arava001@umn.edu

Emmanuel Barillot Institut Curie, Paris F-75248, France; INSERM, U900, Paris F-75248, France; Ecoles des Mines ParisTech, Fontainebleau F-77300, France, Emmanuel.Barillot@curie.fr

Surinder K. Batra Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, Nebraska, USA, sbatra@unmc.edu

Krikor Bijian Faculty of Medicine, Departments of Medicine and Oncology, Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Canada, krikor.bijian@mail.mcgill.ca

Lydia W.T. Cheung School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, h0120883@hkusua.hku.hk

Jérôme Couturier Département Biologie des Tumeurs, Institut Curie, Hôpital, Paris F-75248, France, jerome.couturier@curie.net

Laurence Desjardins Département d’Ophtalmologie, Institut Curie, Hôpital, Paris F-75248, France, laurence.desjardins@curie.net

Stéphanie Duhamel Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; Departments Molecular Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, stephanie.duhamel@umontreal.ca
Contributors

Xavier Sastre-Garau Département Biologie des Tumeurs, Institut Curie, Hôpital, Paris F-75248, France, xavier.sastre@curie.net

Marijke Van Ghelue Department of Medical Genetics, University Hospital of North Norway, N-9038 Tromsø, Norway, Marijke.Van.Ghelue@unn.no

Alessio Giubellino National Cancer Institute, National Institutes of Health, 10 Center Drive, Bldg. 10-CRC, Rm. 1W-5832, Bethesda, MD 20892, USA, giubella@mail.nih.gov

Chi-Tan Hu Research Center for Hepatology, Department of Medicine, Buddhist Tzu Chi General Hospital, School of Medicine and Graduate Institute of Clinical Medicine, Tzu Chi University, Hualien, Taiwan, chitan.hu@msa.hinet.net; chitanhu@tzuchi.com.tw

Carman K.M. Ip School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, h0792007@hkusua.hku.hk

Cécile Laurent Institut Curie, Paris F-75248, France; CNRS, UMR3347, Orsay F-91405, France; INSERM, U1021, Orsay F-91405, France; Université Paris-Sud 11, Orsay F-91405, France; INSERM, U900, Paris F-75248, France; Ecoles des Mines ParisTech, Fontainebleau F-77300, France, cecile.laurent@curie.fr

Sylvain Meloche Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; Departments of Pharmacology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; Departments Molecular Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, sylvain.meloche@umontreal.ca

Murielle Mimeault Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, Nebraska, USA, mmimeault@unmc.edu

Ugo Moens Medical Faculty, Department of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway, ugo.moens@uit.no

Sophie Piperno-Neumann Département D’oncologie Médicale, Institut Curie, Hôpital, Paris F-75248, France, sophie.piperno-neumann@curie.net

Samir Kumar Patra Department of Life Science, National Institute of Technology, Rourkela, Orissa, India, skpatra_99@yahoo.com; samirp@nitrkl.ac.in

Simon Saule Institut Curie, Paris F-75248, France; CNRS, UMR3347, Orsay F-91405, France; INSERM, U1021, Orsay F-91405, France, simon.saule@curie.u-psud.fr

Alexey Shiryaev Medical Faculty, Department of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway, Alexey.Shiryaev@uit.no
Panagiota Toliopoulos Faculty of Medicine, Departments of Medicine and Oncology, Segal Cancer Center of the Jewish General Hospital, McGill University, Montreal, Canada, penny.toliopoulos@mail.mcgill.ca

Laure Voisin Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, laure.voisin@umontreal.ca

Alice S.T. Wong School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, awong1@hku.hk

Jia-Ru Wu Department of Medical Technology, Graduate Institute of Medicine, Tzu Chi University, Hualien, Taiwan, u8931246@yahoo.com.tw

Wen-Sheng Wu Department of Medical Technology, Graduate Institute of Medicine, Tzu Chi University, Hualien, Taiwan; Institute of Medical Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan, wuws@mail.tcu.edu.tw

Pingyu Zhang Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA, pzhang@syr.edu

Patrick A. Zweidler-McKay Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA; University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA, pzweidler@mdanderson.org