Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching—quickly and informally, but with a high quality and the explicit aim to summarize and communicate current knowledge in an accessible way. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research and to serve three purposes:

- to be a compact and modern up-to-date source of reference on a well-defined topic
- to serve as an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas
- to be a source of advanced teaching material for specialized seminars, courses and schools

Both monographs and multi-author volumes will be considered for publication. Edited volumes should, however, consist of a very limited number of contributions only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at springerlink.com. The series content is indexed, abstracted and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the managing editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg/Germany
christian.caron@springer.com
V. I. Kalikmanov

Nucleation Theory

Springer
Dr. V. I. Kalikmanov
Twister Supersonic Gas Solutions BV
Rijswijk
The Netherlands

and

Faculty of Geosciences
Delft University of Technology
Delft
The Netherlands
One of the most striking phenomena in condensed matter physics is the occurrence of abrupt transitions in the structure of a substance at certain temperatures or pressures. These are first-order phase transitions, and examples such as the freezing of water and the condensation of vapors to form mist in the atmosphere are familiar in everyday life. A fascinating aspect of these phenomena is that the conditions at which the transformation takes place can sometimes vary. The freezing point of water is not always 0°C: the liquid can be supercooled considerably if it is pure enough and treated carefully. Similarly, it is possible to raise the pressure of a vapor above the so-called saturation vapor pressure, at which condensation ought to take place according to the thermodynamic properties of the separate phases. Both these phenomena occur because of the requirement for nucleation. In practice, the transformation takes place through the creation of small aggregates, or clusters, of the daughter phase out of the parent phase. In spite of the familiarity of the phenomena involved, accurate calculation of the rate of cluster formation for given conditions of the parent phase meets serious difficulties. This is because the properties of the small clusters are insufficiently well known.

The development from the 1980s onwards of increasingly accurate experimental measurements of the formation rate of droplets from metastable vapors has driven renewed interest in the problems of nucleation theory. Existing models, largely based upon versions of the classical nucleation theory developed in the 1920s–1940s, have on the whole explained the trends in nucleation behavior correctly, but have often failed spectacularly to account for this fresh data. The situation is more dramatic in the case of binary- or, more generally, multi-component nucleation where the trends predicted by the classical theory can be qualitatively in error leading to unphysical results.

This book, starting with the classical phenomenological description of nucleation, gives an overview of recent developments in nucleation theory. It also illustrates application of these various approaches to experimentally relevant problems focusing on the nonequilibrium gas–liquid transition, i.e., formation of liquid
droplets from a metastable vapor. A monograph on nucleation theory would be incomplete without presenting the recent advances in computer simulations of nucleation on a molecular level, which is a powerful research tool complementing both theory and experiment. I was glad that my colleague and friend Dr. Thomas Kraska from the University of Cologne accepted my invitation to write the chapter on Monte Carlo and Molecular Dynamics simulation of nucleation (Chap. 8)—the field to which he made a number of significant contributions.

Obviously, in view of the modest size of the book it was not possible to cover all new approaches formulated in recent years. The choice of the topics, therefore, reflects the background and prejudices of the author.

This monograph is an introduction as well as a compendium to researchers in soft condensed matter physics and chemical physics, graduate and postgraduate students in physics and chemistry starting on research in the area of nucleation, and to experimentalists wishing to gain a better understanding of the efforts being made to account for their data.

I am grateful to a number of colleagues who collaborated with me at various stages of the work. I benefitted greatly from discussions of fundamental problems of nucleation with Howard Reiss, Joe Katz, and Gerry Wilemski, which advanced my understanding of the subject. Several years spent in the group of Rini van Dongen in Eindhoven University will remain an unforgettable experience of a remarkable scientific atmosphere and friendly environment; special thanks are due to the former Ph.D. students Carlo Luijten, Geert Hofmans, and Dima Labetski for numerous discussions at the seminars and help in understanding the subtleties of nucleation experiments. It is a pleasure to thank Ian Ford, Barbara Wyslouzil, Judith Wölk, Jan Wedekind, Dennis van Putten, and Anshel Gleyzer for constructive criticisms. I am indebted to my colleagues and friends Jos Thijssen, Lev Goldenberg, Bob Prokofiev, Leonid Neishtadt, Andrey Morozov, Lyudmila Tsareva, Dmitry Bulahov, Kees Tjeenk Willink, and Marco Betting for encouragement and help without which this book would not have been written. But above all, I am grateful to my family—Esta and Maria—for the constant support during the almost endless process of thinking, writing, and editing of the manuscript.

Delft, May 2012

V. I. Kalikmanov
Contents

1 Introduction .. 1
References .. 3

2 Some Thermodynamic Aspects of Two-Phase Systems 5
2.1 Bulk Equilibrium Properties. 5
2.2 Thermodynamics of the Interface 8
\hspace{1cm} 2.2.1 Planar Interface 8
\hspace{1cm} 2.2.2 Curved Interface 11
References .. 15

3 Classical Nucleation Theory 17
3.1 Metastable States 17
3.2 Thermodynamics 19
3.3 Kinetics and Steady-State Nucleation Rate 24
3.4 Kelvin Equation 29
3.5 Katz Kinetic Approach 31
3.6 Consistency of Equilibrium Distributions 32
3.7 Zeldovich Theory 34
3.8 Transient Nucleation 38
3.9 Phenomenological Modifications of Classical Theory 40
References .. 41

4 Nucleation Theorems 43
4.1 Introduction 43
4.2 First Nucleation Theorem for Multi-Component Systems 44
4.3 Second Nucleation Theorem 49
4.4 Nucleation Theorems from Hill’s Thermodynamics
\hspace{1cm} of Small Systems 51
References .. 53

vii
5 Density Functional Theory 55
 5.1 Nonclassical View on Nucleation 55
 5.2.1 General Principles 56
 5.2.2 Intrinsic Free Energy: Perturbation Approach 60
 5.2.3 Planar Surface Tension 65
 5.3 Density Functional Theory of Nucleation 67
 5.3.1 Nucleation Barrier and Steady State Nucleation Rate 67
 5.3.2 Results .. 69
References ... 70

6 Extended Modified Liquid Drop Model and Dynamic Nucleation Theory 71
 6.1 Modified Liquid Drop Model 71
 6.2 Dynamic Nucleation Theory and Definition of the Cluster Volume 75
 6.3 Nucleation Barrier .. 76
References ... 77

7 Mean-Field Kinetic Nucleation Theory 79
 7.1 Semi-Phenomenological Approach to Nucleation 79
 7.2 Kinetics ... 80
 7.3 Statistical Thermodynamics of Clusters 81
 7.4 Configuration Integral of a Cluster: Mean-Field Approximation 83
 7.5 Structure of a Cluster: Core and Surface Particles 91
 7.6 Coordination Number in the Liquid Phase 95
 7.7 Steady State Nucleation Rate 96
 7.8 Comparison with Experiment
 7.8.1 Water .. 99
 7.8.2 Nitrogen ... 101
 7.8.3 Mercury .. 101
 7.9 Discussion ... 103
 7.9.1 Classification of Nucleation Regimes 103
 7.9.2 Microscopic Surface Tension: Universal Behavior for Lennard-Jones Systems 104
 7.9.3 Tolman’s Correction and Beyond 106
 7.9.4 Small Nucleating Clusters as Virtual Chains 110
References ... 112

8 Computer Simulation of Nucleation 113
 8.1 Introduction .. 113
11.9 Illustrative Results .. 192
11.9.1 Mixture Characterization: Gas-Phase- and
Liquid-Phase Activities 192
11.9.2 Ethanol/Hexanol System 194
11.9.3 Water/Alcohol Systems 196
11.9.4 Nonane/Methane System 198
References .. 202

12 Binary Nucleation: Density Functional Theory 205
12.1 DFT Formalism for Binary Systems.
 General Considerations 205
12.2 Non-ideal Mixtures and Surface Enrichment 209
12.3 Nucleation Barrier and Activity Plots: DFT Versus BCNT ... 210
References .. 213

13 Coarse-Grained Theory of Binary Nucleation 215
13.1 Introduction ... 215
13.2 Katz Kinetic Approach: Extension to Binary Mixtures 216
13.3 Binary Cluster Statistics 222
 13.3.1 Binary Vapor as a System
 of Noninteracting Clusters 222
13.4 Configuration Integral of a Cluster:
 A Coarse-Grained Description 224
 13.4.1 Volume Term 226
 13.4.2 Coarse-Grained Configuration Integral q_{CG}^{na} 227
13.5 Equilibrium Distribution of Binary Clusters 228
13.6 Steady State Nucleation Rate 233
13.7 Results: Nonane/Methane Nucleation 235
References .. 236

14 Multi-Component Nucleation 239
14.1 Energetics of N-Component Cluster Formation 239
14.2 Kinetics ... 245
14.3 Example: Binary Nucleation 250
14.4 Concluding Remarks 251
References .. 251

15 Heterogeneous Nucleation 253
15.1 Introduction ... 253
15.2 Energetics of Embryo Formation 254
15.3 Flat Geometry .. 257
15.4 Critical Embryo: The Fletcher Factor 259
15.5 Kinetic Prefactor 261
15.6 Line Tension Effect 263
Symbols

\(\mathcal{A}_i^v \) Vapor phase activity of component \(i \)
\(\mathcal{A}_i^l \) Liquid phase activity of component \(i \)
\(B_2 \) Second virial coefficient
\(c_p \) Specific heat at constant pressure
\(c_v \) Specific heat at constant volume
\(\mathcal{F} \) Helmholtz free energy of the system
\(\mathcal{F}_{\text{int}} \) Intrinsic Helmholtz free energy
\(\mathcal{F}_d \) Helmholtz free energy of hard spheres with diameter \(d \)
\(\mathcal{F}_n \) Helmholtz free energy of the \(n \)-cluster
\(\mathcal{F}_{\text{conf}} \) Configurational Helmholtz free energy of the \(n \)-cluster
\(\mathcal{F}^{(n)} \) Helmholtz free energy of the gas of \(n \)-clusters
\(G \) Gibbs free energy of the system
\(\Delta G(n) \) Gibbs free energy of \(n \)-cluster formation
\(\Delta G^* \) Nucleation barrier
\(h \) Planck constant
\(J_n \) Net rate of cluster formation \((n \rightarrow n + 1) \)
\(J \) Steady-state nucleation rate
\(J_0 \) Pre-exponential factor for the steady-state nucleation rate
\(k_B \) Boltzmann constant
\(m_1 \) Mass of a molecule
\(n \) Number of particles in a cluster
\(n_c; n^* \) Number of particles in a critical cluster
\(N_1 \) Coordination number in the liquid phase
\(p \) Pressure
\(p^l \) Liquid pressure
\(p^v \) Vapor pressure
\(p_c \) Critical pressure
\(p_d \) Pressure of a hard sphere system
\(p_{\text{sat}} \) Saturation pressure
\(q_n \) Configuration integral of the \(n \)-cluster
\(q_{na,nb} \) Configuration integral of the binary \((n_a, n_b)\)-cluster
\(S \) Supersaturation
\(S' \) Entropy
\(S_n' \) Entropy of the \(n\)-cluster
\(S_n^{\text{conf}} \) Configurational entropy of the \(n\)-cluster
\(T \) Absolute temperature
\(T_c \) Critical temperature
\(\mu_{\text{LJ}}(r) \) Lennard–Jones interaction potential
\(U_N(r_1, \ldots, r_N) \) Microscopic potential energy of a configuration of \(N\) particles
\(Z' \) Compressibility factor in the liquid
\(Z'' \) Compressibility factor in the vapor
\(Z_n \) Partition function of the \(n\)-cluster
\(Z^{(n)} \) Partition function of the gas of \(n\)-clusters
\(Z_{na,nb} \) Partition function of the binary \((n_a, n_b)\)-cluster
\(\gamma \) Zeldovich factor
\(\beta = 1/(k_B T) \) Inverse temperature
\(\gamma_{\infty} \) Surface tension of a flat interface
\(\gamma_{\text{micro}} \) Helmholtz free energy per surface particle in the cluster (microscopic surface tension)
\(\delta_T \) Tolman length
\(\kappa = c_p/c_v \) Ratio of specific heats
\(\sigma_{\text{LJ}}, \sigma_{\text{LJ}} \) Parameters of a Lennard–Jones potential
\(\Lambda \) de Broglie wavelength of a particle
\(\mu \) Chemical potential
\(\mu_n \) Chemical potential of the \(n\)-cluster
\(\mu_d \) Chemical potential of a hard sphere with a diameter \(d\)
\(\mu_{\text{sat}} \) Chemical potential of a substance at vapor–liquid equilibrium (saturation chemical potential)
\(\nu \) Impingement rate per unit surface
\(\nu_i \) Impingement rate per unit surface of component \(i\) in binary nucleation
\(\nu_{\text{av}} \) Average impingement rate per unit surface in binary nucleation
\(\rho' \) Number density in the bulk liquid
\(\rho'' \) Number density in the bulk vapor
\(\rho_c \) Critical number density
\(\tau_i \) Line tension
\(\rho(n) \) Number density of \(n\)-clusters
\(\rho_{\text{sat}}(n) \) Number density of \(n\)-clusters at saturation
\(\Omega \) Grand potential of the system
\(\theta_{\infty} \) Reduced surface tension of a flat interface
\(\theta_{\text{micro}} \) Reduced Helmholtz free energy per surface particle (reduced microscopic surface tension)
CKE Classical Kelvin equation
CAMS Constant angle Mie scattering
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGNT</td>
<td>Coarse-grained nucleation theory</td>
</tr>
<tr>
<td>CNT</td>
<td>Classical nucleation theory</td>
</tr>
<tr>
<td>BCNT</td>
<td>Binary classical nucleation theory</td>
</tr>
<tr>
<td>MKNT</td>
<td>Mean-field kinetic nucleation theory</td>
</tr>
<tr>
<td>EoS</td>
<td>Equation of state</td>
</tr>
<tr>
<td>EMLD</td>
<td>Extended modified liquid drop model</td>
</tr>
<tr>
<td>DNT</td>
<td>Dynamic nucleation theory</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>FPE</td>
<td>Fokker-Planck equation</td>
</tr>
<tr>
<td>GKE</td>
<td>Generalized Kelvin equation</td>
</tr>
<tr>
<td>HPS</td>
<td>High-pressure section of the shock tube</td>
</tr>
<tr>
<td>LPS</td>
<td>Low-pressure section of the shock tube</td>
</tr>
<tr>
<td>MC</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td>MD</td>
<td>Molecular dynamics</td>
</tr>
<tr>
<td>NPC</td>
<td>Nucleation pulse chamber</td>
</tr>
<tr>
<td>NVT</td>
<td>Canonical (NVT) ensemble</td>
</tr>
<tr>
<td>NVE</td>
<td>Microcanonical (NVE) ensemble</td>
</tr>
<tr>
<td>RESS method</td>
<td>Rapid expansion of supercritical solution</td>
</tr>
<tr>
<td>tWF</td>
<td>ten Wolde–Frenkel cluster definition</td>
</tr>
<tr>
<td>SAFT</td>
<td>Statistical associating fluid theory</td>
</tr>
<tr>
<td>SANS</td>
<td>Small-angle neutron scattering</td>
</tr>
<tr>
<td>SAXS</td>
<td>Small-angle X-ray scattering</td>
</tr>
<tr>
<td>SSN</td>
<td>Laval supersonic nozzle</td>
</tr>
<tr>
<td>MFPT</td>
<td>Mean first passage time cluster definition</td>
</tr>
<tr>
<td>WCA</td>
<td>Weeks–Chandler–Anderson theory</td>
</tr>
</tbody>
</table>