Threats to Global Water Security
NATO Science for Peace and Security Series

This Series presents the results of scientific meetings supported under the NATO Programme: Science for Peace and Security (SPS).

The NATO SPS Programme supports meetings in the following Key Priority areas: (1) Defence Against Terrorism; (2) Countering other Threats to Security and (3) NATO, Partner and Mediterranean Dialogue Country Priorities. The types of meeting supported are generally "Advanced Study Institutes" and "Advanced Research Workshops". The NATO SPS Series collects together the results of these meetings. The meetings are co-organized by scientists from NATO countries and scientists from NATO's "Partner" or "Mediterranean Dialogue" countries. The observations and recommendations made at the meetings, as well as the contents of the volumes in the Series, reflect those of participants and contributors only; they should not necessarily be regarded as reflecting NATO views or policy.

Advanced Study Institutes (ASI) are high-level tutorial courses intended to convey the latest developments in a subject to an advanced-level audience.

Advanced Research Workshops (ARW) are expert meetings where an intense but informal exchange of views at the frontiers of a subject aims at identifying directions for future action.

Following a transformation of the programme in 2006 the Series has been re-named and re-organised. Recent volumes on topics not related to security, which result from meetings supported under the programme earlier, may be found in the NATO Science Series.

The Series is published by IOS Press, Amsterdam, and Springer, Dordrecht, in conjunction with the NATO Public Diplomacy Division.

Sub-Series

A. Chemistry and Biology
B. Physics and Biophysics
C. Environmental Security
D. Information and Communication Security
E. Human and Societal Dynamics

http://www.nato.int/science
http://www.springer.com
http://www.iospress.nl

Series C: Environmental Security
Threats to Global Water Security

Edited by

J. Anthony A. Jones
IGU Commission for Water Sustainability
Institute of Geography and Earth Sciences
Aberystwyth University
Aberystwyth
United Kingdom

Trahel G. Vardanian
Department of Physical Geography
Yerevan State University
Yerevan
Armenia

and

Christina Hakopian
Department of Physical Geography
Yerevan State University
Yerevan
Armenia

Published in cooperation with NATO Public Diplomacy Division
TABLE OF CONTENTS

Preface .. xi

PART I: OVERVIEW: THE MAJOR ISSUES ... 1
Threats to Global Water Security: Population Growth, Terrorism, Climate Change, or Commercialisation? ... 3
J.A.A. Jones
Less is More: Approaching Water Security and Sustainability From the Demand Side .. 15
D.B. Brooks and J. Linton
A.Y. Hoekstra
Reducing the Risk: Drought Mitigation and the Economy of Irrigation .. 37
S. Szalai and L. Cselőtei
Working Group I: Risk Assessment and Water Governance .. 45
Chair and rapporteur: D. Brooks

PART II: WATER QUALITY AND TERRORISM .. 49
Drinking Water Security in Crisis Situations From a Medical Perspective .. 51
Biosensors in a System of Instrumental Tools to Prevent Effects of Bioterrorism and Automotive Control of Water Process Purification 59
N.F. Starodub
A High Sensitivity Nuclear Method for Real-Time Detection of Elements and Compounds in Drinking Water and Soil ... 73
P. Buckup
Natural Disasters and Surface and Subsurface Water Pollution Risk Assessment for Some Regions of Georgia .. 83
T. Davitashvili
Storm Surges on the Southern Coast of Gulf of Riga: Case Study of the Lielupe River .. 91
T. Koltsova and J. Belakova
TABLE OF CONTENTS

Ground Water Vulnerability Assessment of the Aparan Aquifer, Republic of Armenia, and its Representation in a 3-D Model 99
A. Aghinian

Wastewater Modeling to Reduce Disaster Risk From Groundwater Contamination .. 107
N. Haruvy and S. Shalhevet

Survival in Groundwater and FT–IR Characterization of Some Pathogenic and Indicator Bacteria ... 117
Z. Filip and K. Demnerova

Working Group II: The Threat From Armed Conflict and Terrorism 123
Chairs and rapporteurs: S. Arlosoroff and J.A.A. Jones

PART III: MANAGING EXTREME EVENTS AND CLIMATE CHANGE ... 129

Climate Change, Glacier Retreat, and Water Availability in the Caucasus Region ... 131
M. Shahgedanova, W. Hagg, D. Hassell, C.R. Stokes and V. Popovnin

Risk Management and Mitigation in Highly Urbanized River Basins ... 145
S. Pagliara

Spatial Data Integration for Emergency Services of Flood Management .. 155
Gh. Stancalie, V. Craciunescu and A. Irimescu

The Use of Remote Sensing and GIS Techniques in Flood Monitoring and Damage Assessment: A Study Case in Romania 167
A. Irimescu, Gh. Stancalie, V. Craciunescu, C. Fleraru and E. Anderson

Flooding in Afghanistan: A Crisis .. 179
E. Hagen and J.F. Teufert

Human Factors in the Floods of Romania .. 187
B. Constantin-Horia, S. Simona, P. Gabriela and S. Adrian

Development of Dangerous Geodynamic Processes in the South Caucasus and the Problem of Mitigating Their Consequences 193
I.V. Bondyrev and E.D. Tsereteli

Threats in the Tienshan-Pamir Region of Kyrgyzstan .. 199
I. Hadjamberdiev, V. Shablovsky and V. Ponomarev
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-Term Prognosis of High Flows in the Mountain Rivers of Georgia</td>
<td>207</td>
</tr>
<tr>
<td>T. Basilashvili</td>
<td></td>
</tr>
<tr>
<td>Water Disasters in the Territory of Armenia</td>
<td>215</td>
</tr>
<tr>
<td>T. Vardanian</td>
<td></td>
</tr>
<tr>
<td>The Floods on the River Danube in 2006: Social Impact and Remedial Processes</td>
<td>225</td>
</tr>
<tr>
<td>M. Lazarescu</td>
<td></td>
</tr>
<tr>
<td>The Analysis of Dangerous Hydrological Processes for the Terek River Basin</td>
<td>233</td>
</tr>
<tr>
<td>N.I. Alexeevskiy and N.L. Frolova</td>
<td></td>
</tr>
<tr>
<td>Floods and Their Risk Assessment in East Siberia</td>
<td>247</td>
</tr>
<tr>
<td>L.M. Korytny, N.V. Kichigina and V.A. Cherkashin</td>
<td></td>
</tr>
<tr>
<td>Removing Chlorine-Containing Organic Compounds in the Environment After Floods</td>
<td>253</td>
</tr>
<tr>
<td>G. Torosyan and S. Harutyunyan</td>
<td></td>
</tr>
<tr>
<td>Calibration of an Atmospheric/Hydrological Model System for Flood Forecasting in the Odra Watershed</td>
<td>257</td>
</tr>
<tr>
<td>H.-T. Mengelkamp</td>
<td></td>
</tr>
<tr>
<td>The Role of Meteorological Models in the Prediction of Weather Hazards – The European Approach</td>
<td>265</td>
</tr>
<tr>
<td>C. Cassardo</td>
<td></td>
</tr>
<tr>
<td>Extending the Danube Flood Forecasting System With the Use of Meteorological Ensembles</td>
<td>277</td>
</tr>
<tr>
<td>A. Csík and G. Bálint</td>
<td></td>
</tr>
<tr>
<td>Working Group III: Threats Due to Climate Change – Global Problems in a Regional Context</td>
<td>281</td>
</tr>
<tr>
<td>Chair and rapporteur: P. Robinson</td>
<td></td>
</tr>
<tr>
<td>PART IV: PROTECTING AQUATIC ECOSYSTEMS</td>
<td>285</td>
</tr>
<tr>
<td>Assessment of Risks and Possible Ecological and Economic Damage from Large-Scale Natural and Man-Induced Catastrophes in Ecologically Vulnerable Regions of Central Asia and the Caucasus</td>
<td>287</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Environmental Management of Intentional or Accidental Environmental Threats to Water Security in the Danube Delta 305 L.-D. Galatchi

Preventing Disaster on French Creek, One of the Most Biologically Diverse Rivers in North America................................. 317 J.O. Palmer and E. Pallant

Appraisal of Methodology of Ecological Risks Assessment Arising from Pollution of the Rivers of the Ukraine 323 V.D. Romanenko, S.A. Afanasyev and A.I. Tsybulskiy

Emergency Response and Water Security of the BTC Pipeline in Ecologically Sensitive Areas of Georgia............................. 333 M. Devidze

PART V: INFRASTRUCTURE – TECHNICAL INNOVATIONS AND FAILURES ... 337

Effects of Reservoirs on Streamflow in the Boreal Region 339 Ming-Ko Woo and R. Thorne

Hydrogeological Factors and the Safe Operation of Hydraulic Structures ... 349 R. Minasyan and S. Zeizafoun

Evaluation of the Effect of a Water Hammer on the Failure of a Corroded Water Pipeline .. 353 G. Pluvinage, C. Schmitt and E. Hadj Taeib

Sewer System Condition, Type of Sewers and Their Impacts on Environmental Management .. 359 Š. Stanko and I. Mahríková

PART VI: RESTORING THE WATER RESOURCES OF THE ARAL SEA BASIN .. 365

The Aral Sea: A Matter of Mutual Trust ... 367 Y. Kamalov

Extreme and Average Glacier Runoff in the Amudarya River Basin ... 371 V. Konovalov

Future of the Aral Sea and the Aral Sea Coast 377 V.A. Dukhovny, A.I. Tuchin, A.G. Sorokin, I. Ruziev and G.V. Stulina
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Disaster: Prevention of Drinking Water Scarcity</td>
<td>381</td>
</tr>
<tr>
<td>Estimation of Ecological Risk of Transboundary Pollution of the Amu River</td>
<td>385</td>
</tr>
<tr>
<td>L. Kondratjeva and N. Fishier</td>
<td></td>
</tr>
<tr>
<td>On the Development of a Strategy for the Optimal Use of the Upstream Water Resources of the Amudary Basin in the National Interests of the Tajik Republic</td>
<td>389</td>
</tr>
<tr>
<td>S. Navruzov</td>
<td></td>
</tr>
<tr>
<td>Integrated Management Strategy for Transboundary Water Resources in Central Asia</td>
<td>395</td>
</tr>
<tr>
<td>I.Sh. Normatov and G.N. Petrov</td>
<td></td>
</tr>
</tbody>
</table>
The UN designated the decade 2005–2015 as the International Decade for Action – Water for Life. The move was initiated at the third World Water Forum in Kyoto, 2003, and it could prove the most significant and effective outcome of the triennial series of World Water For a yet. Its major aims are: (1) to promote efforts to fulfil recent international commitments, especially in the Millennium Goals, (2) to advance towards a truly integrated, international approach to sustainable water management, and (3) to put special emphasis on the role of women in these efforts.

Even so, it faces tremendous and, as I write, increasing obstacles. The intense season of hurricanes and tropical storms in 2008 illustrated yet again not only the power of nature, but also the vulnerability of the poorer nations, like Haiti and Jamaica. New Orleans and Texas fared better, not because of the efforts of the International Decade for Natural Disasters (1990–2000) to increase preparedness, but more because the USA had learnt from its own experiences in Hurricane Katrina.

The biggest obstacle of all is the burgeoning world population. It took off last century, but it is predicted to reach unimaginable heights this century: at least 10 billion by 2050, maybe 20 billion by 2100. Governments are powerless to halt it, even the Chinese. Achieving water security globally against this backdrop will be a Herculean task.

Thus far, the 21st century has also seen three major additions to the problems facing attempts to improve water security: international conflicts, accelerating climate change and seismic shifts in global financial systems. The tremendous effort to install the new hydropower plant at Kajaki Dam in Afghanistan and the continuing cost of protecting it, seemingly in perpetuity, are just one illustration of the new threats from war and terrorism. The arrest of terrorists bent on poisoning Rome’s water supply in 2002, and the daily conflicts over water in Israel and Palestine are lower profile, but remind us of the new global nature of terrorism and ideological clashes, and their potential to disrupt water security. In a remarkable gamble for a man with the scientific kudos of Lord Martin Rees, President of the Royal Society and British Astronomer Royal, he laid a bet of $1,000 in 2002 in the computer magazine Wired that by 2020 an instance of bio-error or bio-terror will have killed a million people. One has to hope that he loses his money, but he just has to be taken seriously.

The impacts of climate change are becoming more apparent, not only from climate change models, but now also from daily experience. The ten warmest years on record have occurred in the last two decades: normal
statistical theory tells us this is not random. The 2007 reports from the International Panel on Climate Change predict more rapid and extreme changes than previous predictions. Melting glaciers and ice sheets reinforce this prospect. More rainfall and less snow in the world as a whole, more intense and frequent storms, floods and droughts and above all the gross redistribution of global water resources are set to radically change our assessment of risk. The time-honoured methods of risk assessment based on records from the recent past, as advocated in the World Meteorological Organization’s *Guides to Hydrological Practices* and used by every professional designer of dams and public water supplies in the world, will no longer be applicable.

The climatic changes will be far from egalitarian, providing more water where it is least needed and ravaging “The South” with drought and the occasional extreme rainfall. More than a quarter-century since Willy Brandt’s seminal report drew attention to the fragility of life in the developing world, coining the term “The South”, and its sequel the UN Special Conference on the Least Developed Countries, began an explosion of Western aid for agriculture and water management, most of The South is even more fragile and faces a steadily worsening situation.

But this is not just due to climate change. A large part of the problem is poor governance and corruption: diversion of aid funds to political pockets, megaprojects aimed at prestige rather than improving living standards and creating unsustainable levels of national debt, disinheritance of the peasantry by agri-business, and straightforward design faults and failures.

And so we come to the third new challenge: financing the water. The nature of the problem has been changing rapidly in recent years. Problems began with the globalization of water companies, first, with the profit motivation of multinational enterprises and subsequently with the loss of national control. Tanzania had a bad experience. It then appeared that loss of control might be exacerbated by the proliferation of takeovers by sovereign wealth funds that might be politically motivated as well. Then just as calls for greater transparency in the operation of these funds seemed to be being heeded by some key players, the credit crunch and one of the most dangerous meltdowns in global financial institutions hit. Its full impact on the flow of international aid and on the financing of bank loans for water-related projects has yet to be felt. But it has the potential to set back all targets, possibly at least for the medium term.

The research papers presented in this volume arise from the NATO Advanced Research Workshop on Global Water Security held in Yerevan, Armenia, in October 2007. Over 40 scientists and water managers attended from Nato countries, Nato-partner countries and the Mediterranean Alliance.
Delegates shared the latest information on both natural and man-made threats to the security of water resources, focusing especially on issues of risk assessment, emergency response and environmental restoration. During the workshop, three Working Groups also discussed the key issues of terrorism, climate change and governance, and summaries of their deliberations are included here.

J.A.A. Jones
Aberystwyth University, UK