Studies in Fuzziness and Soft Computing

Volume 324

Series editor
Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl
The series “Studies in Fuzziness and Soft Computing” contains publications on various topics in the area of soft computing, which include fuzzy sets, rough sets, neural networks, evolutionary computation, probabilistic and evidential reasoning, multi-valued logic, and related fields. The publications within “Studies in Fuzziness and Soft Computing” are primarily monographs and edited volumes. They cover significant recent developments in the field, both of a foundational and applicable character. An important feature of the series is its short publication time and worldwide distribution. This permits a rapid and broad dissemination of research results.

More information about this series at http://www.springer.com/series/2941
Preface

The book is designed for researchers and students working in the field of fuzzy set, rough set, soft set, and their hybrid models. In our real-life problems, there are situations with the uncertain data that may not be successfully modelled by the classical mathematics. There are some mathematical tools for dealing with uncertainties: fuzzy set theory, rough set theory, and soft set theory. The book is written in order to accumulate all the contents of generalised fuzzy theory and all hybrid structures of fuzzy set, rough set, and soft set, so that the researchers get all the information at one place. The primary goal of this book is to help bridge the gap to provide a textbook on the hybrid structures in fuzzy mathematics and their applications in social science.

The concept of ‘fuzzy set theory’ was first introduced by Lotfi A. Zadeh in 1965 (Information and Control, vol. 8, pp. 338–353) and thereafter by C.L. Chang (in Fuzzy topological spaces, J. Math. Anal. Appl., vol. 24, pp. 182–190), paved the way of subsequent development of numerous fuzzy topological concepts. In 1983, Atanassov introduced the concept of ‘intuitionistic fuzzy set’ as a generalisation of the notion of a fuzzy set. Intuitionistic fuzzy sets give both a degree of membership and a degree of non-membership, which are independent of each other. The only requirement is that the sum of these two degrees is not greater than 1. Using intuitionistic fuzzy sets, not only vagueness but also uncertainty is modelled. The concept of ‘rough set theory’, which was first introduced by Z. Pawlak in 1981/1982, deals with the approximation of sets that are difficult to describe with the available information. Rough set introduced by Z. Pawlak is expressed by a boundary region of a set. It is also an approach to vagueness. Thus, fuzzy sets and rough sets are two different approaches to vagueness or impreciseness of the real-life problems. The ‘soft set theory’, which was introduced by Molodtsov in 1999, takes care of the problem that involves such vagueness. In 2001, Maji et al. introduced the idea of intuitionistic fuzzy soft set theory and established some results on them. Theories of fuzzy sets and rough sets are powerful mathematical tools for modelling various types of uncertainty. Molodtsov [2] initiated a novel concept called soft sets, a new mathematical tool for dealing with uncertainties. It has been found that fuzzy set, rough set, and soft set are closely related.
Research works on soft sets are very active and progressing rapidly in these years.

The book introduces the concept and basic properties of ‘generalised interval-valued intuitionistic fuzzy soft sets’. It also discusses the application of generalised interval-valued intuitionistic fuzzy soft sets in decision making with respect to interval of degree of preference. The book also introduces the concept of ‘soft rough intuitionistic fuzzy sets’ and ‘interval-valued intuitionistic fuzzy soft rough sets’. The concept of interval-valued intuitionistic fuzzy soft rough set-based multi-criteria group decision-making scheme is presented, which refines the primary evaluation of the whole expert group and enables us to select the optimal object in a most reliable manner. The proposed scheme is to be illustrated by an example regarding the candidate selection problem.

The book also introduces the concept of ‘interval-valued intuitionistic fuzzy soft topological space (IVIFS topological space)’ together with intuitionistic fuzzy soft open sets (IVIFS open sets) and intuitionistic fuzzy soft closed sets (IVIFS closed sets). Then, we define neighbourhood of an IVIFS set, interior IVIFS set, interior of an IVIFS set, exterior IVIFS set, exterior of an IVIFS set, closure of an IVIFS set, IVIF soft basis, and IVIFS subspace. Some examples and theorems regarding these concepts are presented. The concepts of ‘interval-valued intuitionistic fuzzy soft multi-sets’ and that of ‘interval-valued intuitionistic neutrosophic soft sets’ are introduced and their applications are studied.

The book is organised in ten chapters. In Chap. 1, the basic concepts of fuzzy set, rough set, soft set, fuzzy topology, and intuitionistic fuzzy topology are given for ready reference. Also relation among fuzzy set, rough set, and soft set are shown with suitable examples. Here, soft multi-set and the concept of topological structure formed by soft multi-sets are also discussed. One of the areas in which fuzzy sets, rough sets, and soft sets have been applied most extensively is in modelling for managerial decision making. Thus, this area has been selected by us for consideration. In Chap. 2, the concept of generalised interval-valued intuitionistic fuzzy soft sets together with their basic properties is introduced. Besides, an application of generalised interval-valued intuitionistic fuzzy soft sets in decision making is also presented. In Chap. 3, soft rough intuitionistic fuzzy sets (SRIF sets) are also discussed. Finally, an example that demonstrated that this method can be successfully work is also provided here. It can be applied to problems of many fields that contain uncertainty. The aim of Chap. 4 is to introduce a new concept—interval-valued intuitionistic fuzzy soft rough sets. Also, interval-valued intuitionistic fuzzy soft rough set-based multi-criteria group decision-making scheme is presented. In Chap. 5, the concept of interval-valued intuitionistic fuzzy soft topology is introduced and their basic properties are studied. Chapter 6 introduces the concept of interval-valued intuitionistic fuzzy soft multi-sets and study of its properties and operations. The concept of interval-valued intuitionistic fuzzy soft multi-set relations (IVIFSMS relations for short) is also proposed. Besides, the basic properties of the IVIFSMS relations and various types of IVIFSMS relations are presented in this chapter. Chapter 7 introduces the concept of interval-valued neutrosophic set (IVNS), interval-valued neutrosophic soft set (IVNSS), and
interval-valued neutrosophic soft set (IVNSS) relations. Besides, the basic properties of IVNSS and IVNSS relations and various types of IVNSS relations are studied and also discussed in this chapter. In Chap. 8, the concept of fuzzy soft multi-topology is introduced and their basic properties are studied. The notion of fuzzy soft multi-points, fuzzy soft multi-open sets, fuzzy soft multi-closed sets, fuzzy soft multi-basis, fuzzy soft multi-sub basis, neighbourhoods and neighbourhood systems, and interior and closure of a fuzzy soft multi-set are introduced and their basic properties are investigated. It is shown that a fuzzy soft multi-topological space gives a parameterised family of fuzzy topological spaces. Here, the concepts of fuzzy soft multi-topological subspaces and some basic properties of these concepts are also explored. Lastly, the concept of fuzzy soft multi-compactness and fuzzy soft multi-separation axioms is introduced. The aim of Chap. 9 was to introduce the concept of soft interval-valued intuitionistic fuzzy rough sets. Also, some properties based on soft interval-valued intuitionistic fuzzy rough sets are presented here. Finally, a soft interval-valued intuitionistic fuzzy rough set-based multi-criteria group decision-making scheme is presented. The proposed scheme is illustrated by an example regarding the car selection problem. The aim of the Chap. 10 is to construct IF parameterised intuitionistic fuzzy soft set (IFPIFS set) decision-making problem and to solve the problem with IF parameterised intuitionistic fuzzy soft set theories.

In our real-life problems, there are situations with the uncertain data that may not be successfully modelled by the classical mathematics. There are some mathematical tools for dealing with uncertainties; they are fuzzy set theory introduced by Prof. Zadeh [4], rough set theory introduced by Pawlak [3], and soft set theory initiated by Molodtsov [2] that are related to our work.

I gratefully acknowledge the support provided by Springer for publishing this book.

Prof. Anjan Mukherjee

References

Contents

1 Introduction to Fuzzy Sets, Rough Sets, and Soft Sets 1
 1.1 Sets and Subsets ... 1
 1.2 Fuzzy Subsets ... 2
 1.3 Basic Operations on Fuzzy Subsets 4
 1.4 Fuzzy Topological Space ... 9
 1.5 Intuitionistic Fuzzy Topological Space 14
 1.6 Relation Among Fuzzy Set, Rough Set, Soft Set, and Their Generalisations .. 16
 1.6.1 Relation Between Fuzzy Set and Soft Set 16
 1.6.2 Relation Between Rough Set and Soft Set 16
 1.7 Soft Multi-Sets and Their Basic Properties 18
 1.8 Soft Multi-Topological Spaces 20
 References ... 22

2 On Generalised Interval-Valued Intuitionistic Fuzzy Soft Sets 23
 2.1 An Application of Generalised Interval-Valued Intuitionistic Fuzzy Soft Sets in Decision-Making 26
 2.2 Conclusion .. 30
 References ... 30

3 Soft Rough Intuitionistic Fuzzy Sets .. 31
 References ... 36

4 Interval-Valued Intuitionistic Fuzzy Soft Rough Sets 37
 4.1 A Multi-Criteria Group Decision-Making Problem 43
 4.2 Conclusion .. 47
 References ... 48

5 Interval-Valued Intuitionistic Fuzzy Soft Topological Spaces 49
 5.1 Neighbourhoods and Neighbourhood Systems 56
 5.2 Interior, Exterior, and Closure 58
5.3 Interval-Valued Intuitionistic Fuzzy Soft Subspace Topology .. 62
5.4 Conclusion .. 64
References ... 65

6 Interval-Valued Intuitionistic Fuzzy Soft Multi-Sets and Their Relations ... 67
6.1 Relations on Interval-Valued Intuitionistic Fuzzy Soft Multi-Sets .. 77
6.2 Various Types of Interval-Valued Intuitionistic Fuzzy Soft Multi-Set Relations 83
6.3 Conclusion .. 87
References ... 87

7 Interval-Valued Neutrosophic Soft Sets ... 89
7.1 Interval-Valued Neutrosophic Sets ... 92
7.2 Interval-Valued Neutrosophic Soft Sets ... 93
7.3 Interval-Valued Neutrosophic Soft Set Relations ... 99
7.4 Solution of a Decision-Making Problem .. 106
References ... 109

8 Topological Structure Formed by Soft Multi-Sets and Soft Multi-Compact Spaces 111
8.1 Soft Multi-Sets and Their Basic Properties .. 113
8.2 Soft Multi-Topological Spaces .. 116
8.3 Soft Multi-Basis and Soft Multi-Sub-Basis .. 119
8.4 Neighbourhoods and Neighbourhood Systems ... 120
8.5 Interior and Closure ... 122
8.6 Soft Multi-Subspace Topology .. 125
8.7 Soft Multi-Compact Spaces .. 127
References ... 128

9 Soft Interval-Valued Intuitionistic Fuzzy Rough Sets .. 131
9.1 Preliminaries .. 133
9.2 Rough Sets, Rough Fuzzy Sets, Soft Rough Sets, and Rough Soft Sets 135
9.3 Soft Rough Fuzzy Sets and Soft Fuzzy Rough Soft Sets ... 137
9.4 Soft Interval-Valued Intuitionistic Fuzzy Rough Sets ... 138
9.5 A Multi-Criteria Group Decision-Making Problem ... 143
9.6 Conclusion ... 147
References ... 148
10 IF Parameterised Intuitionistic Fuzzy Soft Set Theories on Decisions-Making 151
 10.1 ifpifs-Aggregation Operator ... 155
 10.2 Conclusion ... 157
 References ... 157

Index ... 159
About the Author

Prof. Anjan Mukherjee is Pro Vice-Chancellor of Tripura University. He has completed his B.Sc and M.Sc in mathematics from University of Calcutta and obtained his Ph.D. from Tripura University. Dr. Mukherjee has 26 years of vast experience in research and teaching. He has published more than 150 research papers in different national and international journals and conference proceedings and has delivered several invited talks. Dr. Mukherjee is in the Editorial Board of *Universal Journal of Computational Mathematics* and also associated with Fuzzy and Rough Sets Association. He has presented his work at University of Texas (USA), City College of New York (USA), 5th Asian Mathematical Conference (Malaysia), and many other universities.