Green Energy and Technology
Takeshi Yao
Editor

Zero-Carbon Energy
Kyoto 2009

Springer
Preface

Securing energy and conservation of the environment are the most important issues for the sustainable development of human beings. Until now, people have relied heavily on fossil fuels for their energy requirements and have released large amounts of greenhouse gases such as carbon dioxide (Here, we have abbreviated all greenhouse gases including carbon dioxide to “CO2.”). Emissions of CO2 have been regarded as the main factor in climate change in recent years, and how to control them is becoming a pressing issue in the world. The energy problem cannot simply be labeled a technological one, as it is also deeply involved with social and economic issues. It is necessary to establish “Low carbon Energy science” as an interdisciplinary field integrating social science and human science with the natural sciences.

From 2008, four departments of Kyoto University, Japan — the Graduate School of Energy Science, the Institute of Advanced Energy, the Department of Nuclear Engineering, and the Research Reactor Institute—have joined forces, and with the participation of the Institute of Economic Research, have been engaged in a program entitled “Energy Science in the Age of Global Warming — Toward a CO2 Zero-Emission Energy System” for a Global Center of Excellence (COE) Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan, with the support of university faculty members. This program aims to establish an international education and research platform to foster educators, researchers, and policy makers who can develop technologies and propose policies for establishing a scenario toward a CO2 zero-emission society no longer dependent on fossil fuels by the year 2100.

In the course of implementing the Global COE, we placed the GCOE Unit for Energy Science Education at its center, and we are proceeding from the Scenario Planning Group and the Advanced Research Cluster to Evaluation, forming mutual associations as we progress. The Scenario Planning Group is setting out a CO2 zero-emission technology roadmap and establishing a CO2 zero-emission scenario. They will also conduct analyses from the standpoints of social values and human behavior. The Advanced Research Cluster, as an education platform based on research, promotes socio-economic study of energy, study of new technologies for renewable energies, and research for advanced nuclear energy by following the roadmap established by the Scenario Planning Group. Evaluation is conducted by exchanging ideas among advisors inside and outside the university, including those from abroad, to gather feedback on the scenario, education, and research.
For education, which is the central activity of the Global COE, we have established the GCOE Unit for Energy Science Education and have selected students from the doctoral course, and are fostering these human resources. The students, on their own initiative, are planning and conducting interdisciplinary group research combining social and human science with natural science, working toward CO2 zero emission. The students will acquire the ability to survey the whole energy system through participation in scenario planning and interaction with researchers from other fields, and will apply that experience to their own research. This approach is expected to become a major feature of human resources cultivation. We will strive to foster young researchers who will be able to employ their skills and knowledge with a broad international perspective and expertise in their field of study in order to respond to the needs of society in terms of various energy and environmental problems. Those new researchers also will become leaders in the twenty-first century, full of vitality and creativity and working toward harmony between the environment and mankind.

We held the First International Symposium of the Global COE titled “Zero-Carbon Energy, Kyoto 2009” on August 20–21, 2009, at Kyoto University Clock Tower in parallel with the First International Summer School on Energy Science for Young Generations (ISSES-YGN) on August 20–22, 2009, at Kyoto University Clock Tower and Kyodai Kaikan. There were many important lectures by invited speakers and members of the Global COE, with interesting presentations by students at the GCOE Unit for Energy Science Education. This book is a compilation of the lectures and presentations. We hope that it will provide the impetus for the establishment of Low carbon Energy science.

Takeshi Yao
Program Leader
Contents

Part I Plenary and Invited Papers

What Can We Learn from Photosynthesis About How to Convert Solar Energy into Fuels? .. 3
Richard J. Cogdell, Katsunori Nakagawa, Masaharu Kondo, Mamoru Nango, and Hideki Hashimoto

Renaissance of Nuclear Energy in the USA: Opportunities, Challenges and Future Research Needs .. 10
Masahiro Kawaji and Sanjoy Banerjee

Eco-Friendly Production of Biodiesel by Utilizing Solid Base Catalysis of Calcium Oxide for Reaction to Convert Vegetable Oil into Its Methyl Esters ... 20
Masato Kouzu

Part II Contributed Papers

γ-Ferric Oxide/Carbon Composite Synthesized by Aqueous Solution Method as a Cathode for Lithium-Ion Batteries 31
Mitsuhiro Hibino and Takeshi Yao

Morphology Control of TiO₂-Based Nanomaterials for Sustainable Energy Applications .. 39
Yoshikazu Suzuki

New Material Processing and Evaluation for TiO₂ by Microwave and Mid-Infrared Light Techniques ... 46
Taro Sonobe, Mahmoud Bakr, Kyohei Yoshida, Kan Hachiya, Toshiteru Kii, and Hideaki Ohgaki

Construction of the Functional Biomolecules with the Ribonucleopeptide Complexes ... 53
Masatora Fukuda, Fong Fong Liew, Shun Nakano, and Takashi Morii
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-Pr Heat Transfer in Viscoelastic Drag-Reducing Turbulent Channel Flow</td>
<td>58</td>
</tr>
<tr>
<td>Yoshinobu Yamamoto, Tomoaki Kunugi, and Feng-Chen Li</td>
<td></td>
</tr>
<tr>
<td>Current Status of Accelerator-Driven System with High-Energy Protons in Kyoto University Critical Assembly</td>
<td>65</td>
</tr>
<tr>
<td>Jae-Yong Lim, Cheol Ho Pyeon, Tsuyoshi Misawa, and Seiji Shiroya</td>
<td></td>
</tr>
<tr>
<td>Part III International Summer School on Energy Science for Young Generations (ISSES-YGN)</td>
<td></td>
</tr>
<tr>
<td>(i) Scenario Planning and Socio-economic Energy Research</td>
<td></td>
</tr>
<tr>
<td>Toward Education for Collaboration Between Different Fields:</td>
<td>75</td>
</tr>
<tr>
<td>An Experiment of Facilitation Viewpoints Utilization for Reflecting Group Discussion</td>
<td></td>
</tr>
<tr>
<td>Kyoko Ito, Eriko Mizuno, and Shogo Nishida</td>
<td></td>
</tr>
<tr>
<td>The Impact of Wind Power Generation on Wholesale Electricity Price at Peak Time Demand in Korea</td>
<td>79</td>
</tr>
<tr>
<td>Seunghyun Ryu, Shinyoung Um, and Suduk Kim</td>
<td></td>
</tr>
<tr>
<td>An Analysis of Eco-Efficiency in Korean Fossil-Fueled Power Plants Using DEA</td>
<td>85</td>
</tr>
<tr>
<td>Hong Souk Shim and Sung Yun Eo</td>
<td></td>
</tr>
<tr>
<td>An Analysis of Energy Efficiency Using DEA:</td>
<td>90</td>
</tr>
<tr>
<td>A Comparison of Korean and Japanese Economic Regions</td>
<td></td>
</tr>
<tr>
<td>Jayeol Ku</td>
<td></td>
</tr>
<tr>
<td>The Role of Nuclear Power in Energy Security and Climate Change in Vietnam</td>
<td>96</td>
</tr>
<tr>
<td>Dinhlong Do, Il Hwan Ahn, and Suduk Kim</td>
<td></td>
</tr>
<tr>
<td>Opportunities and Challenges of Renewable Energy and Distributed Generation Promotion for Rural Electrification in Indonesia</td>
<td>102</td>
</tr>
<tr>
<td>Zulfikar Yurnaidi</td>
<td></td>
</tr>
<tr>
<td>Wind Power Generation’s Impact on Peak Time Demand and on Future Power Mix</td>
<td>108</td>
</tr>
<tr>
<td>Jinho Lee and Suduk Kim</td>
<td></td>
</tr>
<tr>
<td>Development of LiPb–SiC High Temperature Blanket</td>
<td>113</td>
</tr>
<tr>
<td>Dohyoung Kim, Kazuyuki Noborio, Takayasu Hasegawa,</td>
<td></td>
</tr>
<tr>
<td>Yasushi Yamamoto, and Satoshi Konishi</td>
<td></td>
</tr>
</tbody>
</table>
Contents

(ii) Renewable Energy Research and CO₂ Reduction Research

Lipid-Domain-Selective Assembly of Photosynthetic Membrane Proteins into Solid-Supported Membranes 123
Ayumi Sumino, Toshikazu Takeuchi, Masaharu Kondo, Takehisa Dewa, Hideki Hashimoto, Alastair T. Gardiner, Richard J. Cogdell, and Mamoru Nango

Light-Induced Transmembrane Electron Transfer Catalyzed by Phospholipid-Linked Zn Chlorophyll Derivatives on Electrodes ... 129
Yoshito Takeuchi, Hongmei Li, Shingo Ito, Masaharu Kondo, Shuichi Ishigure, Kotaro Kuzuya, Mizuki Amano, Takehisa Dewa, Hideki Hashimoto, Alastair T. Gardiner, Richard J. Cogdell, and Mamoru Nango

Raman Spectroscopic Studies on Silicon Electrodeposition in a Room-Temperature Ionic Liquid .. 135
Yusaku Nishimura, Toshiyuki Nohira, and Rika Hagiwara

DC Connected Hybrid Offshore-Wind and Tidal Turbine Generation System ... 141
Mohammad Lutfur Rahman and Yasuyuki Shirai

Primary Pyrolysis and Secondary Reaction Behaviors as Compared Between Japanese Cedar and Japanese Beech Wood in an Ampoule Reactor .. 151
Mohd Asmadi, Haruo Kawamoto, and Shiro Saka

Some Low-Temperature Phenomena of Cellulose Pyrolysis 156
Seiji Matsuoka, Haruo Kawamoto, and Shiro Saka

Rotational Temperature Measurements in a Molecular Beam with High-Order Harmonic Generation .. 161
Kazumichi Yoshii, Godai Miyaji, and Kenzo Miyazaki

Chemical Conversion of Lignocellulosics as Treated by Two-Step Hot-Compressed Water .. 166
Natthanon Phaiboonsilpa, Xin Lu, Kazuchika Yamauchi, and Shiro Saka

Method for Improving Oxidation Stability of Biodiesel 171
Jiayu Xin and Shiro Saka

Construction of the Artificial Enzyme for Using Solar Energy 176
Shun Nakano, Masatora Fukuda, Kazuki Tainaka, and Takashi Morii
Development of Fluorescent Ribonucleopeptide-Based Sensors for Biologically Active Amines ... 181
Fong Fong Liew, Masatora Fukuda, and Takashi Morii

Light Energy Induced Fluorescence Switching Based on Novel Photochromic Nucleosides ... 186
Katsuhiko Matsumoto, Yoshio Saito, Isao Saito, and Takashi Morii

Development of Nanocrystalline Co–Cu Alloys for Energy Applications .. 191
Motohiro Yuasa, Hiromi Nakano, and Mamoru Mabuchi

Investigation of SI-CI Combustion with Low Octane Number Fuels and Hydrogen using a Rapid Compression/Expansion Machine ... 195
Sopheak Rey, Haruo Morisita, Toru Noda, and Masahiro Shioji

Comparison Between the Hexaboride Materials as Thermionic Cathode in the RF Guns for a Compact MIR-FEL Driver .. 202
Mahmoud Bakr, Kyohei Yoshida, Keisuke Higashimura, Satoshi Ueda, Ryota Kinjo, Heishun Zen, Taro Sonobe, Toshiteru Kii, Kia Masuda, and Hideaki Ohgaki

Indicators for Evaluating Phase Stability During Mechanical Milling ... 211
Kosuke O. Hara, Eiji Yamasue, Hideyuki Okumura, and Keiichi N. Ishihara

The Study of CO₂ Fixation in Spent Oil Sand Under the Different Temperature and Pressure .. 216
Dong-Ha Jang, Hyun-Min Shim, and Hyung-Taek Kim

The Study on Characteristics Upgraded Low Rank Coal (Lignite-IBC) by Changed Temperature and Particle Size ... 222
Tae-Jin Kang, Na-Hyung Jang, and Hyung-Taek Kim

Energy Efficiency of Combined Heat and Power Systems 229
Eunju Min and Suduk Kim

Behavior of a Boron-Doped Diamond Electrode in Molten Chlorides Containing Oxide Ion ... 234
Yuya Kado, Takuya Goto, and Rika Hagiwara
(iii) Advanced Nuclear Energy Research

An Algorithm for Automatic Generation of Fault Tree from MFM Model .. Jie Liu, Ming Yang, and Xu Zhang

A Method of Generating GO-Flow Models from MFM Models .. Xu Zhang, Ming Yang, and Jie Liu

Functional Modeling of Perspectives on the Example of Electric Energy Systems .. Kai Heussen and Morten Lind

Mechanical Properties and Microstructure of SiC/SiC Composites Fabricated for Erosion Component Min-Soo Suh, Akira Kohyama, and Tatsuya Hinoki

Diffusion Bonding of Tungsten to Reduced Activation Ferritic/Martensitic Steel F82H Using a Titanium Interlayer Zhihong Zhong, Tatsuya Hinoki, and Akira Kohyama

The Simulation of Corium Dispersion in Direct Containment Heating Accidents .. Wei Wei and Xin-rong Cao

Study on Three-Dimensional Thermal Hydraulic Simulation of Reactor Core Based on THEATRe Code Zhaocan Meng and Zhijian Zhang

Study on Turbine System of Nuclear Power Plant Based on RELAP5/MOD3.4 Code .. Shao-wu Wang, Min-jun Peng, and Jian-ge Liu

Analysis of Instability in Narrow Annular Multi-channel System Based on RELAP5 Code .. Geng-lei Xia, Min-jun Peng, and Yun Guo

Development of Ultrafast Pulse X-ray Source in Ambient Pressure with a Millijoule High Repetition Rate Femtosecond Laser .. Masaki Hada and Jiro Matsuo
Development of Small Specimen Technique to Evaluate Ductile–Brittle Transition Behavior of a Welded Reactor Pressure Vessel Steel ... 306
Byung Jun Kim, Ryuta Kasada, and Akihiko Kimura

Research on Distributed Monitoring and Prediction System for Nuclear Power Plant ... 310
Yingjie Sun, Min-jun Peng, and Ming Yang

Multiple Scale Nonlinear Phenomena in Nature: From High Confinement in Fusion Plasma to Climate Anomalies 315
Miho Janvier, Yasuaki Kishimoto, and Jiquan Li

The Electric Properties of InSb Crystals for Radiation Detector 320
Yuki Sato, Yasunari Morita, Tomoyuki Harai, and Ikuo Kanno

Kinetic Transport Simulation of ICRF Heating in Tokamak Plasmas ... 324
Hideo Nuga and Atsushi Fukuyama

Electrochemical Study of Neodymium Ions in Molten Chlorides 330
Kazuhito Fukasawa, Akihiro Uehara, Takayuki Nagai, Toshiyuki Fujii, and Hajimu Yamana

A New Numerical Approach of Kinetic Simulation for Complex Plasma Dynamics: Application to Fusion and Astrophysical Plasmas ... 334
Kenji Imadera, Yasuaki Kishimoto, Jiquan Li, and Takayuki Utsumi

Relationship Between Microstructure and Mechanical Property of Transient Liquid Phase Bonded ODS Steel 339
Sanghoon Noh, Ryuta Kasada, and Akihiko Kimura

Nondestructive Testing of NITE-SiC Ceramics for Fusion Reactor Application .. 346
Yun-Seok Shin, Yi-Hyun Park, and Tatsuya Hinoki

Numerical Simulation on Subcooled Pool Boiling .. 354
Yasuo Ose and Tomoaki Kunugi

Framework of a Risk Monitor System for Nuclear Power Plant 360
Ming Yang, Jiande Zhang, Zhijian Zhang, Hidekazu Yoshikawa, and Morten Lind
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Reliability Analysis by GO-FLOW for ECCS System of PWR Nuclear Power Plant</td>
<td>364</td>
</tr>
<tr>
<td>Ming Yang, Zhijian Zhang, Hidekazu Yoshikawa, and Shengyuan Yan</td>
<td></td>
</tr>
<tr>
<td>Prior Evaluation Method of User Interface Design</td>
<td>369</td>
</tr>
<tr>
<td>Shengyuan Yan and Kun Yu</td>
<td></td>
</tr>
<tr>
<td>Consideration of Alumina Coating Fabricated by Sol–Gel Method for PbLi Flow</td>
<td>373</td>
</tr>
<tr>
<td>Yoshitaka Ueki, Tomoaki Kunugi, Masatoshi Kondo, Akio Sagara, Neil B. Morley, and Mohamed A. Abdou</td>
<td></td>
</tr>
<tr>
<td>Feasibility Study on Introducing Building Integrated Photovoltaic System in China and Analysis of the Promotion Policies</td>
<td>380</td>
</tr>
<tr>
<td>Hongbo Ren, Weisheng Zhou, and Ken’ichi Nakagami</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>385</td>
</tr>
<tr>
<td>Keyword Index</td>
<td>389</td>
</tr>
</tbody>
</table>