Springer Monographs in Mathematics

Editor-in-chief

Isabelle Gallagher, UFR de Mathématiques, Université Paris-Diderot, Paris, France
Minhyong Kim, Mathematical Institute, University of Oxford, Oxford, UK

Series editors

Sheldon Axler, Department of Mathematics, San Francisco State University, San Francisco, CA, USA
Mark Braverman, Department of Mathematics, Princeton University, Princeton, NJ, USA
Maria Chudnovsky, Department of Mathematics, Princeton University, Princeton, NJ, USA
Sinan C. Güntürk, Department of Mathematics, Courant Institute of Mathematical Science, New York, NY, USA
Claude Le Bris, CERMICS-ENPC, Marne-la-Vallée, France
Pascal Massart, Université Paris-Sud XI, Orsay, France
Alberto Pinto, Math Department, Faculty of Science, University of Porto, Porto, Portugal
Gabriella Pinzari, Dipartimento di Matematica, Università degli Studi di Napoli Federico II, Napoli, Italy
Ken Ribet, Department of Mathematics 3840, University of California, Berkeley, CA, USA
René Schilling, Institut für Mathematische Stochastik, TU Dresden, Dresden, Germany
Panagiotis Souganidis, Department of Mathematics, University of Chicago, Chicago, IL, USA
Endre Süli, Mathematical Institute, University of Oxford, Oxford, UK
Shmuel Weinberger, Department of Mathematics, University of Chicago, Chicago, IL, USA
Boris Zilber, Department of Mathematics, Oxford University, Oxford, UK
This series publishes advanced monographs giving well-written presentations of the “state-of-the-art” in fields of mathematical research that have acquired the maturity needed for such a treatment. They are sufficiently self-contained to be accessible to more than just the intimate specialists of the subject, and sufficiently comprehensive to remain valuable references for many years. Besides the current state of knowledge in its field, an SMM volume should ideally describe its relevance to and interaction with neighbouring fields of mathematics, and give pointers to future directions of research.

More information about this series at http://www.springer.com/series/3733
Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems
Preface

In this book, focusing on hyperbolic systems, we give self-contained descriptions of

- derivations of Carleman estimates;
- methods for application of Carleman estimates to stability of inverse problems.

Confining ourselves to equations of hyperbolic type, we survey previous and recent results concerning the applicability of Carleman estimates.

We do not intend to pursue any general treatment of the Carleman estimates themselves; rather by arguing in a direct manner, we mainly aim to demonstrate the applicability of Carleman estimates to inverse problems. In many places, we choose direct arguments based on basic calculus, rather than more general sophisticated methods. Because inverse problems are strongly connected with the respective partial differential equations under consideration and, for example, we have to specify unknown coefficients more concretely, and the direct method is more relevant for inverse problems. Moreover, we do not intend the current book to be encyclopedic in any sense, and the references are limited.

Some part is based on a one-semester course delivered at the Graduate School of Mathematical Sciences of The University of Tokyo by the first author when he was invited there as full professor in 2011–2012.

The authors thank Mr. Xinchi Huang (The University of Tokyo) for valuable comments.

The second author is partially supported by Grant-in-Aid for Scientific Research (S) 15H05740 of Japan Society for the Promotion of Science.

September 2017

Mourad Bellassoued
Professor at University of Tunis El Manar
ENIT-LAMSIN
Tunis, Tunisia

Masahiro Yamamoto
Professor at The University of Tokyo
Tokyo, Japan
Contents

1 Basics of Carleman Estimates .. 1
 1.1 Introduction ... 1
 1.2 Carleman Estimate for a One-Dimensional Wave Equation in a
 Time Interval ($-T, T$) 4
 1.3 Carleman Estimate for a One-Dimensional Wave Equation in a
 Time Interval $(0, T)$ 20
 1.4 Carleman Estimate for a Heat Equation 26
 1.5 Carleman Estimate for an Equation with Discontinuous
 coefficients ... 31
 1.6 How to Apply Carleman Estimates to Inverse Problems 45

2 Basic Tools of Riemannian Geometry 51
 2.1 Manifolds ... 51
 2.2 C^m-Functions and Tangent Vectors 53
 2.3 Riemannian Metric 55
 2.4 Connection ... 56
 2.5 Laplace-Beltrami Operator and Hessian on Riemannian
 Manifolds ... 56
 2.6 Green’s Formula 59

3 Well-Posedness and Regularity for the Wave Equation with
 Variable Coefficients 63
 3.1 The Problem .. 63
 3.2 Principal Results 65
 3.3 Homogenous Boundary Condition 66
 3.3.1 Existence and Uniqueness of the Solution 67
 3.3.2 Regularity of Solutions 68
 3.4 Regularity of the Normal Derivative 71
 3.5 Non-homogenous Boundary Condition 75
 3.6 Proofs of the Principal Results 77
4 Carleman Estimate for the Wave Equation on a Riemannian Manifold .. 81
 4.1 What Is a Carleman Estimate? 81
 4.2 Carleman Estimate for a Second-Order Hyperbolic Operator 82
 4.3 Proof of the Carleman Estimates 86
 4.4 Unique Continuation and the Observability Inequality 101
 4.4.1 Conditional Stability for the Cauchy Problem 101
 4.4.2 Observability Inequality 104
 4.5 Exact Controllability ... 108

5 Inverse Problems for Wave Equations on a Riemannian Manifold .. 111
 5.1 Introduction ... 111
 5.2 Inverse Source Problem 114
 5.3 Local Stability ... 121
 5.4 Determination of a Zeroth-Order Coefficient 129
 5.5 Equation with Damping 133
 5.5.1 Coefficient Inverse Problem for an Equation with Damping .. 133
 5.5.2 Coefficient Inverse Problem of Determining Two Coefficients .. 136
 5.6 Determination of the Principal Term 145
 5.7 Supplementary Remark on the Cut-Off and a Carleman Estimate .. 164

6 Realization of the Convexity of the Weight Function 167
 6.1 Introduction ... 167
 6.2 Example of a Function Satisfying (A.1)–(A.2) Globally 172
 6.3 Examples of Functions Satisfying (A.1)–(A.2) Locally 174
 6.3.1 The Case of a Vertex Point on a Convex Subboundary 175
 6.3.2 The Case of a Point on a Convex Smooth Subboundary 178

7 Carleman Estimates for Some Thermoelasticity Systems 183
 7.1 Basic Equations of Thermoelasticity 183
 7.2 Carleman Estimates for Elasticity Systems 184
 7.3 Carleman Estimates for Elliptic/Parabolic Operators 185
 7.4 Carleman Estimate for a Parabolic-Hyperbolic Coupled System .. 196
 7.5 Carleman Estimate for a Thermoelastic Plate System 199
 7.5.1 Carleman Estimate for the Plate Equation 200
 7.5.2 Completion of the Proof of the Carleman Estimate for the Thermoelastic Plate System 203
7.6 Carleman Estimate for a Thermoelasticity System with Residual Stress .. 205
7.6.1 Carleman Estimate for the Lamé System with Residual Stress ... 206
7.6.2 Proof of the Carleman Estimate for the Thermoelasticity ... 209

8 Inverse Heat Source Problem for the Thermoelasticity System ... 211
8.1 Inverse Problem .. 211
8.2 Carleman Estimate for the Thermoelasticity System ... 214
8.3 Proof of Theorem 8.1 .. 216
8.3.1 Preliminary Estimates .. 216
8.3.2 Completion of the Proof of Theorem 8.1 220

9 Inverse Problem for a Hyperbolic Equation with a Finite Set of Boundary Data ... 225
9.1 Anisotropic Hyperbolic Equation .. 225
9.2 Preliminaries for the Proof: Energy Estimate and Carleman Estimate .. 230
9.3 Proof of Theorem 9.1 .. 231
9.3.1 Estimation of the Divergence Term 231
9.3.2 Completion of the Proof ... 234

10 Supplementary Research Problems .. 241
10.1 Inverse Problems with Data on an Arbitrary Subboundary . . . 241
10.2 Inverse Problems for Nonlinear Partial Differential Equations .. 245
10.3 Applicability of Our Method to Other Partial Differential Equations in Mathematical Physics 247
10.3.1 Maxwell Equations ... 247
10.3.2 Radiative Transport Equation 248
10.3.3 Shallow Shell Equations ... 248
10.3.4 A Simplified Model for Viscoelasticity: Hyperbolic Equation with Memory Term 250
10.3.5 Equation of Linear Viscoelasticity 250
10.3.6 Biot’s Equations Describing Wave Propagation in Porous Media .. 251

References .. 253
Index .. 259
Orientation

- Chapter 1 should be helpful for readers who are interested in quickly understanding the essence of Carleman estimates and applications to inverse problems.
- From Chap. 3 on, we give more general treatments. To this purpose, we need some material on Riemannian manifolds, presented in Chap. 2, where we give the minimal necessary account.
- Readers who prefer to become familiar faster with a direct but more comprehensive approach to Carleman estimates and applications can be advised to skip first Chaps. 2 and 3 and go straight to Chaps. 4 and 5. Then, whenever necessary, they can refer to corresponding parts in Chaps. 2 and 3.

Notations

\[\delta_{ij} = \begin{cases} 1, & i = j; \\ 0, & i \neq j. \end{cases} \]

\(|x|\): the Euclidean norm of a vector \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \).

\((x_1, \ldots, x_n)^T\): the transpose of the vector \(x \in \mathbb{R}^n \).

\((x \cdot y)\): the scalar product of \(x, y \in \mathbb{R}^n \).

\((f, h) = \int_D f(x)h(x)dx\), where \(f, h \) are real-valued functions and \(D \) is a domain under consideration.

\(L^2(D) \): the space of real-valued functions \(f \) satisfying \(\int_D |f(x)|^2dx < \infty \).

\(\| \cdot \|_{L^2(D)} \): the norm in the space \(L^2(D) \). If there is no possibility of confusion, then we simply write \(\| \cdot \| \).

\((\cdot, \cdot)_{L^2(D)} \): the scalar product in the space \(L^2(D) \). If there is no possibility of confusion, then we simply write \((\cdot, \cdot) \).

\(M \): Compact smooth Riemannian manifold.

\(\partial M \): the boundary of \(M \), \(\Sigma_0 \): subboundary of \(M \).
\langle X, Y \rangle = \langle X, Y \rangle_g$: the scalar product for $X, Y \in T_x M$: the tangent space on Riemannian manifold M with metric g.

$|X| = |X|_g := \sqrt{\langle X, X \rangle}$

I_n: the $n \times n$ identity matrix.

$\nu(x)$: the unit outward normal vector to the boundary under consideration.

$u' := \partial_i u = \frac{\partial u}{\partial x^i}, \partial_k u = \frac{\partial u}{\partial x^k}, \; k = 1, \ldots, n$.

$\nabla_g, \nabla_g^2, \text{div}_g, \Delta_g$: the gradient, the Hessian, the divergence, the Laplace–Beltrami operator with the metric g respectively.

$\nabla := \nabla_{I_n}, \nabla^2 := \nabla_{I_n}^2, \text{div} := \text{div}_{I_n}, \Delta := \Delta_{I_n}$: the gradient, the Hessian, the divergence, the Laplace–Beltrami operator with the Euclidean metric I_n respectively.

$\partial_N u = (\nabla_g u \cdot \nu)$.

$
\begin{cases}
\text{In Chap. 1} \\
Q = (0, \ell) \times (0, T) \text{ or } Q = \Omega \times (0, T),
Q_\pm = (0, \ell) \times (-T, T).
\end{cases}$

$\begin{cases}
\text{In Chaps. 2–10} \\
Q = M \times (0, T),
\Sigma = \partial M \times (0, T),
\Sigma_0 = \Gamma_0 \times (0, T),
Q_\pm = M \times (-T, T),
\Sigma_\pm = \partial M \times (-T, T),
\Sigma_{0, \pm} = \Gamma_0 \times (-T, T).
\end{cases}$

$\begin{cases}
dx = (\det g)^{\frac{1}{2}} dx_1 \cdots dx_n, \quad \text{in a Riemannian manifold } M, \\
dx = dx_1 \cdots dx_n, \quad \text{in a bounded closed domain } M \subset \mathbb{R}^n
\end{cases}$