Applied Mathematical Sciences

Volume 194

Editors
S.S. Antman, Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
ssa@math.umd.edu
Leslie Greengard, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
Greengard@cims.nyu.edu
P.J. Holmes, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
pholmes@math.princeton.edu

Advisors
J. Bell, Lawrence Berkeley National Lab, Center for Computational Sciences and Engineering, Berkeley, CA, USA
P. Constantin, Department of Mathematics, Princeton University, Princeton, NJ, USA
J. Keller, Department of Mathematics, Stanford University, Stanford, CA, USA
R. Kohn, Courant Institute of Mathematical Sciences, New York University, New York, USA
R. Pego, Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
L. Ryzhik, Department of Mathematics, Stanford University, Stanford, CA, USA
A. Singer, Department of Mathematics, Princeton University, Princeton, NJ, USA
A. Stevens, Department of Applied Mathematics, University of Münster, Münster, Germany
A. Stuart, Mathematics Institute, University of Warwick, Coventry, United Kingdom
S. Wright, Computer Sciences Department, University of Wisconsin, Madison, WI, USA

Founding Editors
Fritz John, Joseph P. LaSalle and Lawrence Sirovich
Preface

Information geometry is a method of exploring the world of information by means of modern geometry. Theories of information have so far been studied mostly by using algebraic, logical, analytical, and probabilistic methods. Since geometry studies mutual relations between elements such as distance and curvature, it should provide the information sciences with powerful tools.

Information geometry has emerged from studies of invariant geometrical structure involved in statistical inference. It defines a Riemannian metric together with dually coupled affine connections in a manifold of probability distributions. These structures play important roles not only in statistical inference but also in wider areas of information sciences, such as machine learning, signal processing, optimization, and even neuroscience, not to mention mathematics and physics.

It is intended that the present monograph will give an introduction to information geometry and an overview of wide areas of application. For this purpose, Part I begins with a divergence function in a manifold. We then show that this provides the manifold with a dually flat structure equipped with a Riemannian metric. A highlight is a generalized Pythagorean theorem in a dually flat information manifold. The results are understandable without knowledge of differential geometry.

Part II gives an introduction to modern differential geometry without tears. We try to present concepts in a way which is intuitively understandable, not sticking to rigorous mathematics. Throughout the monograph, we do not pursue a rigorous mathematical basis but rather develop a framework which gives practically useful and understandable descriptions.

Part III is devoted to statistical inference, where various topics will be found, including the Neyman–Scott problem, semiparametric models, and the EM algorithm. Part IV overviews various applications of information geometry in the fields of machine learning, signal processing, and others.

Allow me to review my own personal history in information geometry. It was in 1958, when I was a graduate student on a master’s course, that I followed a seminar on statistics. The text was “Information Theory and Statistics” by S. Kullback, and
a professor suggested to me that the Fisher information might be regarded as a
Riemannian metric. I calculated the Riemannian metric and curvature of the
manifold of Gaussian distributions and found that it is a manifold of constant
curvature, which is no different from the famous Poincaré half-plane in
non-Euclidean geometry. I was enchanted by its beauty. I believed that a beautiful
structure must have important practical significance, but I was not able to pursue its
consequences further.

Fifteen years later, I was stimulated by a paper by Prof. B. Efron and accom-
panying discussions by Prof. A.P. Dawid, and restarted my investigation into
information geometry. Later, I found that Prof. N.N. Chentsov had developed a
theory along similar lines. I was lucky that Sir D. Cox noticed my approach and
organized an international workshop on information geometry in 1984, in which
many active statisticians participated. This was a good start for information
geometry.

Now information geometry has been developed worldwide and many symposia
and workshops have been organized around the world. Its areas of application have
been enlarged from statistical inference to wider fields of information sciences.

To my regret, I have not been able to introduce many excellent works by other
researchers around the world. For example, I have not been able to touch upon
quantum information geometry. Also I have not been able to refer to many
important works, because of my limited capability.

Last but not least, I would like to thank Dr. M. Kumon and Prof. H. Nagaoka,
who collaborated in the early period of the infancy of information geometry. I also
thank the many researchers who have supported me in the process of construction
of information geometry, Profs. D. Cox, C.R. Rao, O. Barndorff-Nielsen, S.
Lauritzen, B. Efron, A.P. Dawid, K. Takeuchi, and the late N.N. Chentsov, among
many many others. Finally, I would like to thank Ms. Emi Namioka who arranged
my handwritten manuscripts in the beautiful TeX form. Without her devotion, the
monograph would not have appeared.

April 2015
Shun-ichi Amari
Contents

Part I Geometry of Divergence Functions: Dually Flat Riemannian Structure

1 Manifold, Divergence and Dually Flat Structure .. 3
1.1 Manifolds .. 3
1.1.1 Manifold and Coordinate Systems 3
1.1.2 Examples of Manifolds 5
1.2 Divergence Between Two Points 9
1.2.1 Divergence .. 9
1.2.2 Examples of Divergence 11
1.3 Convex Function and Bregman Divergence 12
1.3.1 Convex Function ... 12
1.3.2 Bregman Divergence 13
1.4 Legendre Transformation 16
1.5 Dually Flat Riemannian Structure Derived from Convex
 Function ... 19
1.5.1 Affine and Dual Affine Coordinate Systems 19
1.5.2 Tangent Space, Basis Vectors
 and Riemannian Metric 20
1.5.3 Parallel Transport of Vector 23
1.6 Generalized Pythagorean Theorem and Projection Theorem 24
1.6.1 Generalized Pythagorean Theorem 24
1.6.2 Projection Theorem 26
1.6.3 Divergence Between Submanifolds: Alternating
 Minimization Algorithm 27

2 Exponential Families and Mixture Families of Probability
 Distributions .. 31
2.1 Exponential Family of Probability Distributions 31
2.2 Examples of Exponential Family: Gaussian and Discrete Distributions ... 34
 2.2.1 Gaussian Distribution ... 34
 2.2.2 Discrete Distribution ... 35

2.3 Mixture Family of Probability Distributions ... 36

2.4 Flat Structure: ε-flat and m-flat ... 37

2.5 On Infinite-Dimensional Manifold of Probability Distributions ... 39

2.6 Kernel Exponential Family ... 42

2.7 Bregman Divergence and Exponential Family ... 43

2.8 Applications of Pythagorean Theorem ... 44
 2.8.1 Maximum Entropy Principle ... 44
 2.8.2 Mutual Information ... 46
 2.8.3 Repeated Observations and Maximum Likelihood Estimator ... 47

3 Invariant Geometry of Manifold of Probability Distributions 51
 3.1 Invariance Criterion ... 51
 3.2 Information Monotonicity Under Coarse Graining ... 53
 3.2.1 Coarse Graining and Sufficient Statistics in S_n ... 53
 3.2.2 Invariant Divergence ... 54
 3.3 Examples of f-Divergence in S_n ... 57
 3.3.1 KL-Divergence ... 57
 3.3.2 χ^2-Divergence ... 57
 3.3.3 α-Divergence ... 57
 3.4 General Properties of f-Divergence and KL-Divergence ... 59
 3.4.1 Properties of f-Divergence ... 59
 3.4.2 Properties of KL-Divergence ... 60
 3.5 Fisher Information: The Unique Invariant Metric ... 62
 3.6 f-Divergence in Manifold of Positive Measures ... 65

4 α-Geometry, Tsallis q-Entropy and Positive-Definite Matrices 71
 4.1 Invariant and Flat Divergence ... 71
 4.1.1 KL-Divergence Is Unique ... 71
 4.1.2 α-Divergence Is Unique in R^n_+ ... 72
 4.2 α-Geometry in S_n and R^n_+ ... 75
 4.2.1 α-Geodesic and α-Pythagorean Theorem in R^n_+ ... 75
 4.2.2 α-Geodesic in S_n ... 76
 4.2.3 α-Pythagorean Theorem and α-Projection Theorem in S_n ... 76
 4.2.4 Apportionment Due to α-Divergence ... 77
 4.2.5 α-Mean ... 77
 4.2.6 α-Families of Probability Distributions ... 80
 4.2.7 Optimality of α-Integration ... 82
 4.2.8 Application to α-Integration of Experts ... 83
4.3 Geometry of Tsallis q-Entropy ... 84
 4.3.1 q-Logarithm and q-Exponential Function 85
 4.3.2 q-Exponential Family (α-Family) of Probability
 Distributions ... 86
 4.3.3 q-Escort Geometry .. 87
 4.3.4 Deformed Exponential Family: χ-Escort Geometry 89
 4.3.5 Conformal Character of q-Escort Geometry 91
4.4 (u, v)-Divergence: Dually Flat Divergence in Manifold
 of Positive Measures .. 92
 4.4.1 Decomposable (u, v)-Divergence 92
 4.4.2 General (u, v) Flat Structure in R^n_+ 95
4.5 Invariant Flat Divergence in Manifold of Positive-Definite
 Matrices ... 96
 4.5.1 Bregman Divergence and Invariance Under $Gl(n)$ 96
 4.5.2 Invariant Flat Decomposable Divergences
 Under $O(n)$.. 98
 4.5.3 Non-flat Invariant Divergences 101
4.6 Miscellaneous Divergences ... 102
 4.6.1 γ-Divergence .. 102
 4.6.2 Other Types of (α, β)-Divergences 102
 4.6.3 Burbea–Rao Divergence and Jensen–Shannon
 Divergence .. 103
 4.6.4 (ρ, τ)-Structure and (F, G, H)-Structure 104

Part II Introduction to Dual Differential Geometry

5 Elements of Differential Geometry 109
 5.1 Manifold and Tangent Space 109
 5.2 Riemannian Metric .. 111
 5.3 Affine Connection .. 112
 5.4 Tensors ... 114
 5.5 Covariant Derivative ... 116
 5.6 Geodesic .. 117
 5.7 Parallel Transport of Vector 118
 5.8 Riemann–Christoffel Curvature 119
 5.8.1 Round-the-World Transport of Vector 120
 5.8.2 Covariant Derivative and RC Curvature 122
 5.8.3 Flat Manifold .. 123
 5.9 Levi–Civita (Riemannian) Connection 124
 5.10 Submanifold (Riemannian) Connection 126
 5.10.1 Submanifold .. 126
 5.10.2 Embedding Curvature 127
6 Dual Affine Connections and Dually Flat Manifold 131
6.1 Dual Connections 131
6.2 Metric and Cubic Tensor Derived from Divergence 134
6.3 Invariant Metric and Cubic Tensor 136
6.4 α-Geometry 136
6.5 Dually Flat Manifold 137
6.6 Canonical Divergence in Dually Flat Manifold 138
6.7 Canonical Divergence in General Manifold of Dual
Connections .. 141
6.8 Dual Foliations of Flat Manifold and Mixed Coordinates .. 143
6.8.1 k-cut of Dual Coordinate Systems: Mixed
Coordinates and Foliation 144
6.8.2 Decomposition of Canonical Divergence 145
6.8.3 A Simple Illustrative Example: Neural Firing 146
6.8.4 Higher-Order Interactions of Neuronal Spikes 148
6.9 System Complexity and Integrated Information 150
6.10 Input–Output Analysis in Economics 157

Part III Information Geometry of Statistical Inference

7 Asymptotic Theory of Statistical Inference 165
7.1 Estimation .. 165
7.2 Estimation in Exponential Family 166
7.3 Estimation in Curved Exponential Family 168
7.4 First-Order Asymptotic Theory of Estimation 171
7.5 Higher-Order Asymptotic Theory of Estimation 173
7.6 Asymptotic Theory of Hypothesis Testing 175

8 Estimation in the Presence of Hidden Variables 179
8.1 EM Algorithm 179
8.1.1 Statistical Model with Hidden Variables 179
8.1.2 Minimizing Divergence Between Model Manifold
and Data Manifold 182
8.1.3 EM Algorithm 184
8.1.4 Example: Gaussian Mixture 184
8.2 Loss of Information by Data Reduction 185
8.3 Estimation Based on Misspecified Statistical Model 186

9 Neyman-Scott Problem: Estimating Function
and Semiparametric Statistical Model 191
9.1 Statistical Model Including Nuisance Parameters 191
9.2 Neyman–Scott Problem and Semiparametrics 194
9.3 Estimating Function 197
9.5 Solutions to Neyman–Scott Problems 206
 9.5.1 Estimating Function in the Exponential Case 206
 9.5.2 Coefficient of Linear Dependence 208
 9.5.3 Scale Problem 209
 9.5.4 Temporal Firing Pattern of Single Neuron 211

10 Linear Systems and Time Series 215
 10.1 Stationary Time Series and Linear System 215
 10.2 Typical Finite-Dimensional Manifolds of Time Series .. 217
 10.3 Dual Geometry of System Manifold 219
 10.4 Geometry of AR, MA and ARMA Models 223

Part IV Applications of Information Geometry

11 Machine Learning .. 231
 11.1 Clustering Patterns 231
 11.1.1 Pattern Space and Divergence 231
 11.1.2 Center of Cluster 232
 11.1.3 \(k \)-Means: Clustering Algorithm 233
 11.1.4 Voronoi Diagram 234
 11.1.5 Stochastic Version of Classification and Clustering 236
 11.1.6 Robust Cluster Center 238
 11.1.7 Asymptotic Evaluation of Error Probability in Pattern
 Recognition: Chernoff Information 240
 11.2 Geometry of Support Vector Machine 242
 11.2.1 Linear Classifier 242
 11.2.2 Embedding into High-Dimensional Space 245
 11.2.3 Kernel Method 246
 11.2.4 Riemannian Metric Induced by Kernel 247
 11.3 Stochastic Reasoning: Belief Propagation and CCCP
 Algorithms .. 249
 11.3.1 Graphical Model 250
 11.3.2 Mean Field Approximation and \(m \)-Projection 252
 11.3.3 Belief Propagation 255
 11.3.4 Solution of BP Algorithm 257
 11.3.5 CCCP (Convex–Concave Computational
 Procedure) .. 259
 11.4 Information Geometry of Boosting 260
 11.4.1 Boosting: Integration of Weak Machines 261
 11.4.2 Stochastic Interpretation of Machine 262
 11.4.3 Construction of New Weak Machines 263
 11.4.4 Determination of the Weights of Weak Machines .. 263
11.5 Bayesian Inference and Deep Learning .. 265
 11.5.1 Bayesian Duality in Exponential Family 266
 11.5.2 Restricted Boltzmann Machine ... 268
 11.5.3 Unsupervised Learning of RBM ... 269
 11.5.4 Geometry of Contrastive Divergence 273
 11.5.5 Gaussian RBM ... 275

12 Natural Gradient Learning and Its Dynamics
 in Singular Regions .. 279
 12.1 Natural Gradient Stochastic Descent Learning 279
 12.1.1 On-Line Learning and Batch Learning 279
 12.1.2 Natural Gradient: Steepest Descent Direction
 in Riemannian Manifold .. 282
 12.1.3 Riemannian Metric, Hessian and Absolute Hessian 284
 12.1.4 Stochastic Relaxation of Optimization Problem 286
 12.1.5 Natural Policy Gradient in Reinforcement Learning 287
 12.1.6 Mirror Descent and Natural Gradient 289
 12.1.7 Properties of Natural Gradient Learning 290
 12.2 Singularity in Learning: Multilayer Perceptron 296
 12.2.1 Multilayer Perceptron .. 296
 12.2.2 Singularities in M .. 298
 12.2.3 Dynamics of Learning in M 302
 12.2.4 Critical Slowdown of Dynamics 305
 12.2.5 Natural Gradient Learning Is Free of Plateaus 309
 12.2.6 Singular Statistical Models 310
 12.2.7 Bayesian Inference and Singular Model 312

13 Signal Processing and Optimization ... 315
 13.1 Principal Component Analysis .. 315
 13.1.1 Eigenvalue Analysis .. 315
 13.1.2 Principal Components, Minor Components
 and Whitening .. 316
 13.1.3 Dynamics of Learning of Principal and Minor
 Components .. 319
 13.2 Independent Component Analysis 322
 13.2.3 Estimating Function of ICA: Semiparametric
 Approach ... 330
 13.3 Non-negative Matrix Factorization 333
 13.4 Sparse Signal Processing .. 336
 13.4.1 Linear Regression and Sparse Solution 337
 13.4.2 Minimization of Convex Function Under L_1
 Constraint ... 338
 13.4.3 Analysis of Solution Path .. 341
 13.4.4 Minkovskian Gradient Flow 343
 13.4.5 Underdetermined Case ... 344
13.5 Optimization in Convex Programming 345
13.5.1 Convex Programming .. 345
13.5.2 Dually Flat Structure Derived from Barrier Function 347
13.5.3 Computational Complexity and m-curvature. 348
13.6 Dual Geometry Derived from Game Theory 349
13.6.1 Minimization of Game-Score 349
13.6.2 Hyvärinen Score ... 353

References .. 359

Index ... 371