Graduate Texts in Physics

Series editors

Kurt H. Becker, Polytechnic School of Engineering, Brooklyn, USA
Jean-Marc Di Meglio, Université Paris Diderot, Paris, France
Sadri Hassani, Illinois State University, Normal, USA
Bill Munro, NTT Basic Research Laboratories, Atsugi, Japan
Richard Needs, University of Cambridge, Cambridge, UK
William T. Rhodes, Florida Atlantic University, Boca Raton, USA
Susan Scott, Australian National University, Acton, Australia
H. Eugene Stanley, Boston University, Boston, USA
Martin Stutzmann, TU München, Garching, Germany
Andreas Wipf, Friedrich-Schiller-Universität Jena, Jena, Germany
Graduate Texts in Physics

Graduate Texts in Physics publishes core learning/teaching material for graduate- and advanced-level undergraduate courses on topics of current and emerging fields within physics, both pure and applied. These textbooks serve students at the MS- or PhD-level and their instructors as comprehensive sources of principles, definitions, derivations, experiments and applications (as relevant) for their mastery and teaching, respectively. International in scope and relevance, the textbooks correspond to course syllabi sufficiently to serve as required reading. Their didactic style, comprehensiveness and coverage of fundamental material also make them suitable as introductions or references for scientists entering, or requiring timely knowledge of, a research field.

More information about this series at http://www.springer.com/series/8431
Preface

Purpose and Emphasis

Mechanics not only is the oldest branch of physics but was and still is the basis for all of theoretical physics. Quantum mechanics can hardly be understood, perhaps cannot even be formulated, without a good knowledge of general mechanics. Field theories such as electrodynamics borrow their formal framework and many of their building principles from mechanics. In short, throughout the many modern developments of physics where one frequently turns back to the principles of classical mechanics, its model character is felt. For this reason, it is not surprising that the presentation of mechanics reflects to some extent the development of modern physics and that today this classical branch of theoretical physics is taught rather differently than at the time of Arnold Sommerfeld, in the 1920s, or even in the 1950s, when more emphasis was put on the theory and the applications of partial differential equations. Today, symmetries and invariance principles, the structure of the space–time continuum, and the geometrical structure of mechanics play an important role. The beginner should realize that mechanics is not primarily the art of describing block and tackles, collisions of billiard balls, constrained motions of the cylinder in a washing machine, or bicycle riding. Although fascinating such systems may be, mechanics is primarily the field where one learns to develop general principles from which equations of motion may be derived, to understand the importance of symmetries for the dynamics, and, last but not least, to get some practice in using theoretical tools and concepts that are essential for all branches of physics.

Besides its role as a basis for much of theoretical physics and as a training ground for physical concepts, mechanics is a fascinating field in itself. It is not easy to master, for the beginner, because it has many different facets and its structure is less homogeneous than, say, that of electrodynamics. On a first assault, one usually does not fully realize both its charm and its difficulty. Indeed, on returning to
various aspects of mechanics, in the course of one’s studies, one will be surprised to
discover again and again that it has new facets and new secrets. And finally, one
should be aware of the fact that mechanics is not a closed subject, lost forever in the
archives of the nineteenth century. As the reader will realize in Chap. 6, if he or she
has not realized it already, mechanics is an exciting field of research with many
important questions of qualitative dynamics remaining unanswered.

Structure of the Book and a Reading Guide

Although many people prefer to skip prefaces, I suggest that the reader, if he or she
is one of them, make an exception for once and reads at least this section and the
next. The short introductions at the beginning of each chapter are also recom-
mended because they give a summary of the chapter’s content.

Chapter 1 starts from Newton’s equations and develops the elementary dynamics
of one-, two-, and many-body systems for unconstrained systems. This is the basic
material that could be the subject of an introductory course on theoretical physics or
could serve as a text for an integrated (experimental and theoretical) course.

Chapter 2 is the “classical” part of general mechanics describing the principles of
canonical mechanics following Euler, Lagrange, Hamilton, and Jacobi. Most of the
material is a MUST. Nevertheless, the sections on the symplectic structure of
mechanics (Sect. 2.28) and on perturbation theory (Sects. 2.38–2.40) may be
skipped on a first reading.

Chapter 3 describes a particularly beautiful application of classical mechanics:
the theory of spinning tops. The rigid body provides an important and highly
nontrivial example of a motion manifold that is not a simple Euclidean space \mathbb{R}^f,
where f is the number of degrees of freedom. Its rotational part is the manifold of
SO(3), the rotation group in three real dimensions. Thus, the rigid body illustrates a
Lie group of great importance in physics within a framework that is simple and
transparent.

Chapter 4 deals with relativistic kinematics and dynamics of pointlike objects
and develops the elements of special relativity. This may be the most difficult part
of the book, as far as the physics is concerned, and one may wish to return to it
when studying electrodynamics.

Chapter 5 is the most challenging in terms of the mathematics. It develops the
basic tools of differential geometry that are needed to formulate mechanics in this
setting. Mechanics is then described in geometrical terms, and its underlying
structure is worked out. This chapter is conceived such that it may help to bridge the
gap between the more “physical” texts on mechanics and the modern mathematical
literature on this subject. Although it may be skipped on a first reading, the tools
and the language developed here are essential if one wishes to follow the modern
literature on qualitative dynamics.
Chapter 6 provides an introduction to one of the most fascinating recent developments of classical dynamics: stability and deterministic chaos. It defines and illustrates all important concepts that are needed to understand the onset of chaotic motion and the quantitative analysis of unordered motions. It culminates in a few examples of chaotic motion in celestial mechanics.

Chapter 7, finally, gives a short introduction to continuous systems, i.e. systems with an infinite number of degrees of freedom.

Exercises and Practical Examples. In addition to the exercises that follow Chaps. 1–6, the book contains a number of practical examples in the form of exercises followed by complete solutions. Most of these are meant to be worked out on a personal computer, thereby widening the range of problems that can be solved with elementary means, beyond the analytically integrable ones. I have tried to choose examples simple enough that they can be made to work even on a programmable pocket computer and in a spirit, I hope, that will keep the reader from getting lost in the labyrinth of computational games.

Length of this Book

Clearly, there is much more material here than can be covered in one semester. The book is designed for a two-semester course (i.e. typically, an introductory course followed by a course on general mechanics). Even then, a certain choice of topics will have to be made. However, the text is sufficiently self-contained that it may be useful for complementary reading and individual study.

Mathematical Prerequisites

A physicist must acquire certain flexibility in the use of mathematics. On the one hand, it is impossible to carry out all steps in a deduction or a proof, since otherwise one will not get very far with the physics one wishes to study. On the other hand, it is indispensable to know analysis and linear algebra in some depth, so as to be able to fill in the missing links in a logical deduction. Like many other branches of physics, mechanics makes use of many and various disciplines of mathematics, and one cannot expect to have all the tools ready before beginning its study. In this book, I adopt the following, somewhat generous attitude towards mathematics. In many places, the details are worked out to a large extent; in others, I refer to well-known material of linear algebra and analysis. In some cases, the reader might have to return to a good text in mathematics or else, ideally, derive certain results for himself or herself. In some cases, it might also be helpful to consult the appendix at the end of the book.
General Comments and Acknowledgements

This sixth English edition follows closely the eighth German edition (Volume 1 of a series of five textbooks). As compared to the fifth English edition published in 2007, there are a number revisions and additions. Some of these are the following. In Chap. 1, more motivation for the introduction of phase space at this early stage is given. A paragraph on the notion of hodograph is included which emphasizes the special nature of Keplerian bound orbits. Chapter 2 is supplemented by some extensions and further explanations, specifically in relation to Legendre transformation. Also, a new section on a generalized version of Noether’s theorem was added, together with some enlightening examples. In Chap. 3, more examples are given for inertia tensors and the use of Steiner’s theorem. Here and in Chap. 4, the symbolic “bra” and “ket” notation is introduced in characterizing vectors and their duals. The present, sixth edition differs from the previous, fifth edition of 2007 by a few corrections and some additions in response to specific questions asked by students and other readers.

The book contains the solutions to all exercises, as well as some historical notes on scientists who made important contributions to mechanics and to the mathematics on which it rests. The index of names, in addition to the subject index, may also be helpful in locating quickly specific items in mechanics.

This book was inspired by a two-semester course on general mechanics that I have taught on and off over the last decades at the Johannes Gutenberg University at Mainz and by seminars on geometrical aspects of mechanics. I thank my collaborators, colleagues, and students for stimulating questions, helpful remarks, and profitable discussions. I was happy to realize that the German original, since its VIII Preface first appearance in October 1988, has become a standard text at German-speaking universities, and I can only hope that it will continue to be equally successful in its English version. I am grateful for the many encouraging reactions and suggestions I have received over the years. Among those to whom I owe special gratitude are P. Hagedorn, K. Hepp, D. Kastler, H. Leutwyler, L. Okun, N. Papadopoulos, J.M. Richard, G. Schuster, J. Smith, M. Stingl, N. Straumann, W. Thirring, E. Vogt, and V. Vento. Special thanks are due to my former student R. Schöpf who collaborated on the earlier version of the solutions to the exercises. I thank Maximilian Becker for carefully reading the whole book and for his numerous suggestions for improving it. I thank J. Wisdom for his kind permission to use four of his figures illustrating chaotic motions in the solar system, and P. Beckmann who provided the impressive illustrations for the logistic equation and who advised me on what to say about them.

The excellent cooperation with the team of Dr Thorsten Schneider at Springer-Verlag is gratefully acknowledged. Last but not least, I owe special thanks to Dörte for her patience and encouragement.
As with the German edition, I dedicate this book to all those students who wish to study mechanics at some depth. If it helps to make them aware of the fascination of this beautiful field and of physics in general, then one of my goals in writing this book is reached.

Mainz, Germany

November 2017

Florian Scheck
Contents

1 Elementary Newtonian Mechanics ... 1
 1.1 Newton’s Laws (1687) and Their Interpretation 2
 1.2 Uniform Rectilinear Motion and Inertial Systems 5
 1.3 Inertial Frames in Relative Motion 6
 1.4 Momentum and Force ... 7
 1.5 Typical Forces. A Remark About Units 8
 1.6 Space, Time, and Forces .. 10
 1.7 The Two-Body System with Internal Forces 11
 1.7.1 Center-of-Mass and Relative Motion 11
 1.7.2 Example: The Gravitational Force Between Two
 Celestial Bodies (Kepler’s Problem) 12
 1.7.3 Center-of-Mass and Relative Momentum in
 the Two-Body System .. 20
 1.8 Systems of Finitely Many Particles 21
 1.9 The Principle of Center-of-Mass Motion 22
 1.10 The Principle of Angular-Momentum Conservation 22
 1.11 The Principle of Energy Conservation 23
 1.12 The Closed n-Particle System 24
 1.13 Galilei Transformations .. 25
 1.14 Space and Time with Galilei Invariance 29
 1.15 Conservative Force Fields .. 31
 1.16 One-Dimensional Motion of a Point Particle 33
 1.17 Examples of Motion in One Dimension 36
 1.17.1 The Harmonic Oscillator 36
 1.17.2 The Planar Mathematical Pendulum 38
 1.18 Phase Space for the n-Particle System (in \mathbb{R}^3) 39
 1.19 Existence and Uniqueness of the Solutions of $\ddot{x} = \mathcal{F}(x, t)$ 41
 1.20 Physical Consequences of the Existence and
 Uniqueness Theorem .. 42
1.21 Linear Systems 44
 1.21.1 Linear, Homogeneous Systems 44
 1.21.2 Linear, Inhomogeneous Systems 45
1.22 Integrating One-Dimensional Equations of Motion 46
1.23 Example: The Planar Pendulum for Arbitrary Deviations from the Vertical 47
1.24 Example: The Two-Body System with a Central Force 51
1.25 Rotating Reference Systems: Coriolis and Centrifugal Forces ... 58
1.26 Examples of Rotating Reference Systems 60
1.27 Scattering of Two Particles that Interact via a Central Force:
 Kinematics .. 68
1.28 Two-Particle Scattering with a Central Force: Dynamics 71
1.29 Example: Coulomb Scattering of Two Particles with
 Equal Mass and Charge 76
1.30 Mechanical Bodies of Finite Extension 80
1.31 Time Averages and the Virial Theorem 84
Appendix: Practical Examples 86

2 The Principles of Canonical Mechanics 93
 2.1 Constraints and Generalized Coordinates 93
 2.1.1 Definition of Constraints 93
 2.1.2 Generalized Coordinates 95
 2.2 D’Alembert’s Principle 96
 2.2.1 Definition of Virtual Displacements 96
 2.2.2 The Static Case 96
 2.2.3 The Dynamical Case 97
 2.3 Lagrange’s Equations 99
 2.4 Examples of the Use of Lagrange’s Equations 100
 2.5 A Digression on Variational Principles 102
 2.6 Hamilton’s Variational Principle (1834) 105
 2.7 The Euler–Lagrange Equations 105
 2.8 Further Examples of the Use of Lagrange’s Equations 107
 2.9 A Remark About Nonuniqueness of the Lagrangian Function ... 108
 2.10 Gauge Transformations of the Lagrangian Function 109
 2.11 Admissible Transformations of the Generalized Coordinates ... 110
 2.12 The Hamiltonian Function and Its Relation to the Lagrangian Function L .. 112
 2.13 The Legendre Transformation for the Case of One
 Variable .. 113
 2.14 The Legendre Transformation for the Case of Several
 Variables .. 115
 2.15 Canonical Systems 116
Contents

3.7 Angular Momentum of a Rigid Body .. 216
3.8 Force-Free Motion of Rigid Bodies ... 218
3.9 Another Parametrization of Rotations: The Euler Angles 221
3.10 Definition of Eulerian Angles ... 223
3.11 Equations of Motion of Rigid Bodies ... 224
3.12 Euler’s Equations of Motion .. 227
3.13 Euler’s Equations Applied to a Force-Free Top 230
3.14 The Motion of a Free Top and Geometric Constructions 235
3.15 The Rigid Body in the Framework of Canonical Mechanics 238
3.16 Example: The Symmetric Children’s Top in a Gravitational Field 242
3.17 More About the Spinning Top .. 245
3.18 Spherical Top with Friction: The “Tippe Top” 246
 3.18.1 Conservation Law and Energy Considerations 247
 3.18.2 Equations of Motion and Solutions with Constant Energy 250
Appendix: Practical Examples ... 254

4 Relativistic Mechanics ... 257
4.1 Failures of Nonrelativistic Mechanics .. 258
4.2 Constancy of the Speed of Light ... 261
4.3 The Lorentz Transformations .. 262
4.4 Analysis of Lorentz and Poincaré Transformations 268
 4.4.1 Rotations and Special Lorentz Transformations (“Boosts”) 271
 4.4.2 Interpretation of Special Lorentz Transformations 275
4.5 Decomposition of Lorentz Transformations into Their Components 276
 4.5.1 Proposition on Orthochronous, Proper Lorentz Transformations 276
 4.5.2 Corollary of the Decomposition Theorem and Some Consequences 278
4.6 Addition of Relativistic Velocities .. 281
4.7 Galilean and Lorentzian Space–Time Manifolds 284
4.8 Orbital Curves and Proper Time .. 288
4.9 Relativistic Dynamics ... 290
 4.9.1 Newton’s Equation ... 290
 4.9.2 The Energy–Momentum Vector ... 291
 4.9.3 The Lorentz Force ... 295
4.10 Time Dilatation and Scale Contraction 297
4.11 More About the Motion of Free Particles 299
4.12 The Conformal Group ... 302
5 Geometric Aspects of Mechanics

5.1 Manifolds of Generalized Coordinates

5.2 Differentiable Manifolds

5.2.1 The Euclidean Space \mathbb{R}^n

5.2.2 Smooth or Differentiable Manifolds

5.2.3 Examples of Smooth Manifolds

5.3 Geometrical Objects on Manifolds

5.3.1 Functions and Curves on Manifolds

5.3.2 Tangent Vectors on a Smooth Manifold

5.3.3 The Tangent Bundle of a Manifold

5.3.4 Vector Fields on Smooth Manifolds

5.3.5 Exterior Forms

5.4 Calculus on Manifolds

5.4.1 Differentiable Mappings of Manifolds

5.4.2 Integral Curves of Vector Fields

5.4.3 Exterior Product of One-Forms

5.4.4 The Exterior Derivative

5.4.5 Exterior Derivative and Vectors in \mathbb{R}^3

5.5 Hamilton–Jacobi and Lagrangian Mechanics

5.5.1 Coordinate Manifold Q, Velocity Space TQ, and Phase Space T^*Q

5.5.2 The Canonical One-Form on Phase Space

5.5.3 The Canonical, Symplectic Two-Form on M

5.5.4 Symplectic Two-Form and Darboux’s Theorem

5.5.5 The Canonical Equations

5.5.6 The Poisson Bracket

5.5.7 Time-Dependent Hamiltonian Systems

5.6 Lagrangian Mechanics and Lagrange Equations

5.6.1 The Relation Between the Two Formulations of Mechanics

5.6.2 The Lagrangian Two-Form

5.6.3 Energy Function on TQ and Lagrangian Vector Field

5.6.4 Vector Fields on Velocity Space TQ and Lagrange Equations

5.6.5 The Legendre Transformation and the Correspondence of Lagrangian and Hamiltonian Functions

5.7 Riemannian Manifolds in Mechanics

5.7.1 Affine Connection and Parallel Transport

5.7.2 Parallel Vector Fields and Geodesics

5.7.3 Geodesics as Solutions of Euler–Lagrange Equations

5.7.4 Example: Force-Free Asymmetric Top
6 Stability and Chaos ... 381
 6.1 Qualitative Dynamics 381
 6.2 Vector Fields as Dynamical Systems 382
 6.2.1 Some Definitions of Vector Fields and Their Integral Curves 384
 6.2.2 Equilibrium Positions and Linearization of Vector Fields 386
 6.2.3 Stability of Equilibrium Positions 390
 6.2.4 Critical Points of Hamiltonian Vector Fields 393
 6.2.5 Stability and Instability of the Free Top 396
 6.3 Long-Term Behavior of Dynamical Flows and Dependence on External Parameters 398
 6.3.1 Flows in Phase Space 399
 6.3.2 More General Criteria for Stability 400
 6.3.3 Attractors 403
 6.3.4 The Poincaré Mapping 407
 6.3.5 Bifurcations of Flows at Critical Points 412
 6.3.6 Bifurcations of Periodic Orbits 416
 6.4 Deterministic Chaos 418
 6.4.1 Iterative Mappings in One Dimension 418
 6.4.2 Qualitative Definitions of Deterministic Chaos 420
 6.4.3 An Example: The Logistic Equation 424
 6.5 Quantitative Measures of Deterministic Chaos 429
 6.5.1 Routes to Chaos 429
 6.5.2 Liapunov Characteristic Exponents 433
 6.5.3 Strange Attractors 436
 6.6 Chaotic Motions in Celestial Mechanics 437
 6.6.1 Rotational Dynamics of Planetary Satellites 438
 6.6.2 Orbital Dynamics of Asteroids with Chaotic Behavior 444

7 Continuous Systems ... 447
 7.1 Discrete and Continuous Systems 447
 7.2 Transition to the Continuous System 452
 7.3 Hamilton’s Variational Principle for Continuous Systems 453
 7.4 Canonically Conjugate Momentum and Hamiltonian Density 456
 7.5 Example: The Pendulum Chain 457
 7.6 Comments and Outlook 461

Appendix A: Exercises ... 467
Appendix B: Solution of Exercises 495
<table>
<thead>
<tr>
<th>Contents</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix C: Appendix</td>
<td>571</td>
</tr>
<tr>
<td>Bibliography</td>
<td>581</td>
</tr>
<tr>
<td>Index</td>
<td>585</td>
</tr>
</tbody>
</table>