Hydrocarbon and Lipid Microbiology Protocols

Isolation and Cultivation

Scientific Advisory Board
Jack Gilbert, Ian Head, Mandy Joye, Victor de Lorenzo,
Jan Roelof van der Meer, Colin Murrell, Josh Neufeld,
Roger Prince, Juan Luis Ramos, Wilfred Röling,
Heinz Wilkes, Michail Yakimov
Preface to Hydrocarbon and Lipid Microbiology Protocols

All active cellular systems require water as the principal medium and solvent for their metabolic and ecophysiological activities. Hydrophobic compounds and structures, which tend to exclude water, although providing inter alia excellent sources of energy and a means of biological compartmentalization, present problems of cellular handling, poor bioavailability and, in some cases, toxicity. Microbes both synthesize and exploit a vast range of hydrophobic organics, which includes biogenic lipids, oils and volatile compounds, geochemically transformed organics of biological origin (i.e. petroleum and other fossil hydrocarbons) and manufactured industrial organics. The underlying interactions between microbes and hydrophobic compounds have major consequences not only for the lifestyles of the microbes involved but also for biogeochemistry, climate change, environmental pollution, human health and a range of biotechnological applications. The significance of this “greasy microbiology” is reflected in both the scale and breadth of research on the various aspects of the topic. Despite this, there was, as far as we know, no treatise available that covers the subject. In an attempt to capture the essence of greasy microbiology, the Handbook of Hydrocarbon and Lipid Microbiology (http://www.springer.com/life+sciences/microbiology/book/978-3-540-77584-3) was published by Springer in 2010 (Timmis 2010). This five-volume handbook is, we believe, unique and of considerable service to the community and its research endeavours, as evidenced by the large number of chapter downloads. Volume 5 of the handbook, unlike volumes 1–4 which summarize current knowledge on hydrocarbon microbiology, consists of a collection of experimental protocols and appendices pertinent to research on the topic.

A second edition of the handbook is now in preparation and a decision was taken to split off the methods section and publish it separately as part of the Springer Protocols program (http://www.springerprotocols.com/). The multi-volume work Hydrocarbon and Lipid Microbiology Protocols, while rooted in Volume 5 of the Handbook, has evolved significantly, in terms of range of topics, conceptual structure and protocol format. Research methods, as well as instrumentation and strategic approaches to problems and analyses, are evolving at an unprecedented pace, which can be bewildering for newcomers to the field and to experienced researchers desiring to take new approaches to problems. In attempting to be comprehensive – a one-stop source of protocols for research in greasy microbiology – the protocol volumes inevitably contain both subject-specific and more generic protocols, including sampling in the field, chemical analyses, detection of specific functional groups of microorganisms and community composition, isolation and cultivation of such organisms, biochemical analyses and activity measurements, ultrastructure and imaging methods, genetic and genomic analyses,
systems and synthetic biology tool usage, diverse applications, and the exploitation of bioinformatic, statistical and modelling tools. Thus, while the work is aimed at researchers working on the microbiology of hydrocarbons, lipids and other hydrophobic organics, much of it will be equally applicable to research in environmental microbiology and, indeed, microbiology in general. This, we believe, is a significant strength of these volumes.

We are extremely grateful to the members of our Scientific Advisory Board, who have made invaluable suggestions of topics and authors, as well as contributing protocols themselves, and to generous ad hoc advisors like Wei Huang, Manfred Auer and Lars Blank. We also express our appreciation of Jutta Lindenborn of Springer who steered this work with professionalism, patience and good humour.

Colchester, Essex, UK Terry J. McGenity
Braunschweig, Germany Kenneth N. Timmis
Palma de Mallorca, Spain Balbina Nogales

Reference

Contents

Introduction to the Isolation and Cultivation of Microbes Involved in the Hydrocarbon Cycle ... 1
Terry J. McGinty

Protocols for High-Throughput Isolation and Cultivation 27
Karsten Zengler

Single Bacteria Studies Using Microfluidics 37
Yanqing Song, Bing Li, Yong Qiu, and Huabing Yin

Cultivating Fastidious Microbes .. 57
J. Cameron Thrash, Jessica Lee Weckhorst, and David M. Pitre

Cultivation and Preservation of Hydrocarbonoclastic Microorganisms,
Particularly Cycloclasticus Species .. 79
Maria Genovese, Renata Denaro, Daniela Russo, Francesca Crisafi, Santina Santisi,
Simone Cappello, Laura Giuliano, and Michail M. Yakimov

Cultivating Aerobic Hydrocarbon-Degrading Bacteria from Micro-algae .. 95
Tony Gutierrez

Two-Phase Cultivation Techniques for Hydrocarbon-Degrading Microorganisms . 107
Lukas Y. Wick, Sally Otto, and Christof Holliger

Protocol for Isolation, Screening, and Cultivation of Asphaltene-Degrading Microorganism .. 119
Seyed Morteza Zamir, Tina Tavassoli, and Seyed Abbas Shojaosadati

Cultivation of Anaerobic Microorganisms with Hydrocarbons as Growth Substrates ... 131
F. Widdel

Enrichment and Isolation of Metal Respiring Hydrocarbon Oxidizers 143
Adam J. Williamson and John D. Coates

Enrichment and Isolation of Chloroxyanion-Respiring Hydrocarbon Oxidizers .. 165
Tyler P. Barnum and John D. Coates

Cultivation of Methanogens .. 177
Taiki Katayama and Yoichi Kamagata
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivation of Methylotrophs</td>
<td>197</td>
</tr>
<tr>
<td>Donovan P. Kelly, Julie K. Ardley, and Ann P. Wood</td>
<td></td>
</tr>
<tr>
<td>Cultivation of Methanotrophs</td>
<td>231</td>
</tr>
<tr>
<td>Svetlana N. Dedysh and Peter F. Dunfield</td>
<td></td>
</tr>
<tr>
<td>Cultivation of Environmental Bacterial Communities as Multispecies Biofilms</td>
<td>249</td>
</tr>
<tr>
<td>Marc A. Demeter, Joe Lemire, Susanne Golby, Monika Schwering, Howard Ceri, and Raymond J. Turner</td>
<td></td>
</tr>
<tr>
<td>Cultivation of Hydrocarbon-Degrading Fungi</td>
<td>269</td>
</tr>
<tr>
<td>Dietmar Schlosser and Lukas Y. Wick</td>
<td></td>
</tr>
<tr>
<td>Oleaginous Microalgae Isolation and Screening for Lipid Productivity Using a Standard Protocol</td>
<td>283</td>
</tr>
<tr>
<td>Van Thang Duong, Boer Bao, and Peer M. Schenk</td>
<td></td>
</tr>
<tr>
<td>Preservation of Microbial Pure Cultures and Mixed Communities</td>
<td>299</td>
</tr>
<tr>
<td>Bram Vekeman and Kim Heylen</td>
<td></td>
</tr>
<tr>
<td>Erratum to: Protocols for High-Throughput Isolation and Cultivation</td>
<td>317</td>
</tr>
<tr>
<td>Karsten Zengler</td>
<td></td>
</tr>
<tr>
<td>Erratum to: Cultivation and Preservation of Hydrocarbonoclastic Microorganisms, Particularly Cycloclasticus Species</td>
<td>319</td>
</tr>
<tr>
<td>Maria Genovese, Renata Denaro, Daniela Russo, Francesca Crisafi, Santina Santisi, Simone Cappello, Laura Giuliano, and Michail M. Yakimov</td>
<td></td>
</tr>
</tbody>
</table>
Terry J. McGenity is a Reader at the University of Essex, UK. His Ph.D., investigating the microbial ecology of ancient salt deposits (University of Leicester), was followed by postdoctoral positions at the Japan Marine Science and Technology Centre (JAMSTEC, Yokosuka) and the Postgraduate Research Institute for Sedimentology (University of Reading). His overarching research interest is to understand how microbial communities function and interact to influence major biogeochemical processes. He worked as a postdoc with Ken Timmis at the University of Essex, where he was inspired to investigate microbial interactions with hydrocarbons at multiple scales, from communities to cells, and as both a source of food and stress. He has broad interests in microbial ecology and diversity, particularly with respect to carbon cycling (especially the second most abundantly produced hydrocarbon in the atmosphere, isoprene), and is driven to better understand how microbes cope with, or flourish in hypersaline, desiccated and poly-extreme environments.

Kenneth N. Timmis read microbiology and obtained his Ph.D. at Bristol University, where he became fascinated with the topics of environmental microbiology and microbial pathogenesis, and their interface pathogen ecology. He undertook postdoctoral training at the Ruhr-University Bochum with Uli Winkler, Yale with Don Marvin, and Stanford with Stan Cohen, at the latter two institutions as a Fellow of the Helen Hay Whitney Foundation, where he acquired the tools and strategies of genetic approaches to investigate mechanisms and causal relationships underlying microbial activities. He was subsequently appointed Head of an Independent Research Group at the Max Planck Institute for Molecular Genetics in Berlin, then Professor of Biochemistry in the University of Geneva Faculty of Medicine. Thereafter, he became Director of the Division of Microbiology at the National Research Centre for Biotechnology (GBF)/now the Helmholtz Centre for Infection Research (HZI) and Professor of Microbiology at the Technical University Braunschweig. His group has worked for many years, inter alia, on the biodegradation of oil hydrocarbons, especially the genetics and regulation of toluene degradation, pioneered the genetic design and experimental evolution of novel catabolic activities, discovered the new group of marine hydrocarbonoclastic bacteria, and conducted early genome sequencing of bacteria that
became paradigms of microbes that degrade organic compounds (\textit{Pseudomonas putida} and \textit{Alcanivorax borkumensis}). He has had the privilege and pleasure of working with and learning from some of the most talented young scientists in environmental microbiology, a considerable number of which are contributing authors to this series, and in particular Balbina and Terry. He is Fellow of the Royal Society, Member of the EMBO, Recipient of the Erwin Schrödinger Prize, and Fellow of the American Academy of Microbiology and the European Academy of Microbiology. He founded the journals \textit{Environmental Microbiology}, \textit{Environmental Microbiology Reports} and \textit{Microbial Biotechnology}. Kenneth Timmis is currently Emeritus Professor in the Institute of Microbiology at the Technical University of Braunschweig.

\textbf{Balbina Nogales} is a Lecturer at the University of the Balearic Islands, Spain. Her Ph.D. at the Autonomous University of Barcelona (Spain) investigated antagonistic relationships in anoxygenic sulphur photosynthetic bacteria. This was followed by postdoctoral positions in the research groups of Ken Timmis at the German National Biotechnology Institute (GBF, Braunschweig, Germany) and the University of Essex, where she joined Terry McGenity as postdoctoral scientist. During that time, she worked in different research projects on community diversity analysis of polluted environments. After moving to her current position, her research is focused on understanding microbial communities in chronically hydrocarbon-polluted marine environments, and elucidating the role in the degradation of hydrocarbons of certain groups of marine bacteria not recognized as typical degraders.