Chaos in Brain Function

Containing Original Chapters by E. Başar and T. H. Bullock and Topical Articles Reprinted from the Springer Series in Brain Dynamics

With 66 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong
Preface

The analysis of deterministic chaos is currently an active field in many branches of research. Mathematically all nonlinear dynamical systems with more than two degrees of freedom can generate chaos, becoming unpredictable over a longer time scale. The brain is a nonlinear system par excellence. Accordingly, the concepts of chaotic dynamics have found, in the last five years, an important application in research on compound electrical activity of the brain. The present volume seeks to cover most of the relevant studies in the newly emerging field of chaotic attractors in the brain.

This volume is essentially a selection and reorganization of contributions from the first two volumes in the *Springer Series in Brain Dynamics*, which were based on conferences held in 1985 and 1987 in Berlin. It also includes (a) a survey of progress in the recording of evoked oscillations of the brain both at the cellular and EEG levels and (b) an agenda for research on chaotic dynamics.

Although the first publications pointing out evidence of chaotic behavior of the EEG did not appear until the beginning of 1985, the presence of the pioneering scientists in this field gave the participants at the first conference (volume 1) a strong impulse toward this field. For me, as conference organizer, having been for a long time active in nonlinear EEG research, the integration of this topic was self-evident; however, the enthusiasm of the conference participants was greater than expected.

Just two years later, there were three times as many contributions to the second volume of *Brain Dynamics*, and the analysis of chaotic attractors belonged to the important building blocks. Here the topic "integrative functions of the brain" was dealt with in terms of several multidisciplinary approaches. The response to the conference was so favorable that two additional papers were added to volume 2, and the authors were highly cooperative in making revisions in and additions to their papers. The authors seemed not to be put off by the strong review procedure but rather to be motivated by it. One of the editors of volume 2, T. H. Bullock, insisted on methodological extensions and conceptual additions on the basis of extensive interaction with the authors and postconference communication among experts.

The stimulus to publish this supplementary volume lay in the interest expressed by several persons to learn about and to start research in this new field. At present it is still not easy to glean the relevant publications, distributed over several special journals and conference
volumes. For this reason, the editor and the publisher decided that a book of about 170 pages might more easily reach scientists working in this new field than the two full volumes covering a much broader spectrum of neuroscience.

Now greater than ever, we need new windows that can add to the growing list of techniques for comprehension of electromagnetic activity and local signs of change in the brain. In the “Epilogue” to *Brain Dynamics* volume 2 Bullock points out the importance of the new window as follows: “The contributions of Babloyantz, Rössler, Başar and Röschke, Skinner, Mpitsos, and others make me hopeful that we will soon see the dimensionality of many parts of the brain at the same time, second by second, in cats, catfish, and octopus, as rest changes into arousal, directed attention and recognition.” In fact, shortly thereafter it became possible to realize some of these wishes. It is my hope that this book as well will prove to address the genuine research questions of the future.

The editor wishes to express his sincere thanks to Professor T. H. Bullock for providing his constructive critique on the preliminary survey and for adding his agenda for research on chaotic dynamics to the present volume.

EROL BaşAR
Contents

Chaotic Dynamics and Resonance Phenomena in Brain Function: Progress, Perspectives and Thoughts
E. Başar (With 6 Figures) .. 1

An Agenda for Research on Chaotic Dynamics
T. H. Bullock .. 31

Chaotic Dynamics in Brain Activity
A. Babloyantz (With 3 Figures) 42

The EEG is Not a Simple Noise: Strange Attractors in Intracranial Structures
J. Röschke and E. Başar (With 7 Figures) 49

Nonlinear Neural Dynamics in Olfaction as a Model for Cognition
W. J. Freeman (With 3 Figures) 63

Self-Similarity in Hyperchaotic Data
O. E. Rössler and J. L. Hudson (With 4 Figures) 74

Estimation of Correlation Dimensions from Single and Multichannel Recordings – A Critical View
A. Babloyantz (With 4 Figures) 83

Correlation Dimensions in Various Parts of Cat and Human Brain in Different States
J. Röschke and E. Başar (With 14 Figures) 92

Magnetoecephalography and Attractor Dimension: Normal Subjects and Epileptic Patients
K. Saermark, J. Lebech, C. K. Bak, and A. Sabers
(With 7 Figures) .. 110

Chaotic Attractors in a Model of Neocortex: Dimensionalities of Olfactory Bulb Surface Potentials Are Spatially Uniform and Event Related
(With 7 Figures) .. 119
Dimensional Analysis of the Waking EEG
K. E. Graf and T. Elbert (With 7 Figures) 135

Analysis of Strange Attractors in EEGs
with Kinesthetic Experience and 4-D Computer Graphics
W. J. Freeman (With 4 Figures) 153

Chaos in Brain Function and the Problem of Nonstationarity:
A Commentary
G. J. Mepitsos . 162
List of Contributors

BABLOYANTZ, A., Department of Physical Chemistry II,
Free University of Brussels, P.O. Box 231, Boulevard du Triomphe,
B-1050 Brussels, Belgium

BAK, C. K., Physics Laboratory I, Technical University of Denmark,
DK-2800 Lyngby, Denmark

BAŞAR, E., Institute of Physiology, Medical University Lübeck,
Ratzeburger Allee 160, D-2400 Lübeck, FRG

BULLOCK, T. H., Department of Neurosciences A-001,
School of Medicine, University of California, San Diego, La Jolla,
CA 92093, USA

BURTON, W. D., Neurosciences Signal Analysis Laboratory,
Department of Psychiatry and Behavioral Science,
University of Texas Medical School, Houston, TX 77030, USA

ELBERT, T., Psychiatry, 116A3, Veterans Administration Medical Center,
3801 Miranda, Palo Alto, CA 94304, USA

FREEMAN, W. J., Department of Physiology-Anatomy,
University of California, Berkeley, CA 94720, USA

FULTON, K., Neurophysiology Section, Department of Neurology
and Neuroscience Program, Baylor College of Medicine,
Houston, TX 77030, USA

GRAF, K. E., Department of Clinical and Physiological Psychology,
University of Tübingen, Gartenstr. 29, D-7400 Tübingen, FRG

HUDSON, J. L., Department of Chemical Engineering,
University of Virginia, Charlottesville, VA 22901, USA

LANDISMAN, C. E., Neurophysiology Section, Department of Neurology
and Neuroscience Program, Baylor College of Medicine,
Houston, TX 77030, USA

LEBECH, J., Physics Laboratory I, Technical University of Denmark,
DK-2800 Lyngby, Denmark

MARTIN, J. L., Neurophysiology Section, Department of Neurology
and Neuroscience Program, Baylor College of Medicine,
Houston, TX 77030, USA
MITRA, M., Neurophysiology Section, Department of Neurology and Neuroscience Program, Baylor College of Medicine, Houston, TX 77030, USA

MOMMER, M. M., Neurophysiology Section, Department of Neurology and Neuroscience Program, Baylor College of Medicine, Houston, TX 77030, USA

MPITSOLOS, G. J., M.O. Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA

RÖSCHKE, J., Institute of Physiology, Medical University Lübeck, Ratzeburger Allee 160, D-2400 Lübeck, FRG

RÖSSLER, O. E., Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 8, D-7400 Tübingen, FRG

SABERS, A., Department of Neurology, Hvidovre Hospital, DK-2650 Hvidovre, Denmark

SAERMARK, K., Physics Laboratory I, Technical University of Denmark, DK-2800 Lyngby, Denmark

SALTZBERG, B., Neuroscience Signal Analysis Laboratory, Department of Psychiatry and Behavioral Science, University of Texas Medical School, Houston, TX 77030, USA

SKINNER, J. E., Neurophysiology Section, Department of Neurology and Neuroscience Program, Baylor College of Medicine, Houston, TX 77030, USA