Volumes already published

Volume 1: Trees I (1986)
Volume 2: Crops I (1986)
Volume 3: Potato (1987)
Volume 4: Medicinal and Aromatic Plants I (1988)

Volumes in preparation

Volume 5: Trees II
Volume 6: Crops II
Volume 7: Medicinal and Aromatic Plants II
Volume 8: Plant Protoplasts and Genetic Engineering I
Volume 9: Plant Protoplasts and Genetic Engineering II
Dedicated to
Jason and Raju Bajaj
Preface

Two aspects of the biotechnology of medicinal and aromatic plants are of immediate application. (1) Micropropagation under controlled germ-free conditions which enables their fast multiplication and availability throughout the year irrespective of external environment — this is specially useful for elite and rare plants. (2) A large-scale culture and low-temperature storage of cells enables retention of their biosynthetic potential for the production of important secondary metabolites, medicines, flavours and other pharmaceutical products. This book has been compiled with a view to bringing together information and literature on the biotechnology and the present state of the art of plant cell cultures for their potential use in the pharmaceutical industry.

This volume comprises 29 chapters on the biotechnology of medicinal and aromatic plants grouped into three sections, (1) micropropagation, immobilization, cryopreservation, bioreactors, production of secondary metabolites and their impact in pharmacy, (2) production through cell cultures of antitumour compounds, L-Dopa, shikonin, anthraquinone, morphinan alkaloids, caffeine, berberine, valeoptrieates, rosmarinic acid, quinine, tropanes, hypoxoside, ellipticine, paeoniflorin, saponins, cardenolides etc, and (3) distribution, economic importance, conventional propagation, review of the tissue culture work on micropropagation and the in vitro production of compounds of medicinal and pharmaceutical interest in various species of Cannabis, Centaurium, Cinchona, Digitalis, Duboisia, Hypoxia, Lithospermum, Ochrosia, Paeonia, Panax, Papavar, Rehmannia, Rhamnus and Rhaza. The large-scale in vitro multiplication and potential for industrial production of cell cultures by bioreactors, and their storage for the production of secondary metabolites, medicines, flavours and other pharmaceutical products has also been discussed. Through cell culture it is possible to alter chemical pathways by biotransformation to produce compounds previously considered rare. Biotechnology of medicinal and aromatic plants is thus pressed into the service of mankind.

This book will serve as a reference source for advanced students and research scientists in plant biotechnology, pharmacognosy, phytochemistry, tissue culture, botany and agriculture dealing with the medicinal and aromatic plants. The book may also be of special interest, and use for teachers of pharmacy in colleges where new courses in biotechnology for the production of pharmaceutical products are being taught or new curricula being designed.

New Delhi, February 1988

Y. P. S. BAJAJ
Series Editor
Contents

Section I Micropropagation, Immobilization, Cryopreservation, Bioreactors, Production of Secondary Metabolites and Its Impact on Pharmacy

I.1 Medicinal, Aromatic, and Industrial Materials from Plants
M.F. BALANDRIN and J.A. KLOCKE (With 4 Figures)

<table>
<thead>
<tr>
<th>1. Introduction</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Secondary Metabolites</td>
<td>11</td>
</tr>
<tr>
<td>3. Future Prospects for Discovering New and Useful Bioactive Compounds from Plants</td>
<td>23</td>
</tr>
<tr>
<td>4. Plant Cell Tissue Cultures as New Alternative Sources of Secondary Natural Products</td>
<td>26</td>
</tr>
<tr>
<td>5. Summary and Conclusions</td>
<td>30</td>
</tr>
<tr>
<td>References</td>
<td>31</td>
</tr>
</tbody>
</table>

I.2 Formation of Secondary Metabolites in Cultured Plant Cells and Its Impact on Pharmacy
J. BERLIN

<table>
<thead>
<tr>
<th>1. Introduction</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Establishment of Productive Cell Culture Systems</td>
<td>39</td>
</tr>
<tr>
<td>3. De-Novo Synthesis of Known Drugs by Cell Cultures</td>
<td>49</td>
</tr>
<tr>
<td>4. Plant Cell Cultures as a Source of Novel Active Compounds</td>
<td>51</td>
</tr>
<tr>
<td>5. The Use of the Enzymatic Potential of Plant Cell Culture</td>
<td>52</td>
</tr>
<tr>
<td>6. Outlook</td>
<td>53</td>
</tr>
<tr>
<td>7. Summary and Conclusion</td>
<td>54</td>
</tr>
<tr>
<td>References</td>
<td>55</td>
</tr>
</tbody>
</table>

I.3 Biotechnology of the Micropropagation of Medicinal and Aromatic Plants
Y.P.S. BAJAJ, M. FURMANOWA, and O. OLSZOWSKA (With 14 Figures)

1. Medicinal Plant Biotechnology	60
2. In Vitro Propagation of Plants	72
3. Conclusions and Prospects of Medicinal Plant Biotechnology	89
References	92
I.4 Bioreactors for the Large-Scale Culture of Plant Cells
T. HASHIMOTO and S. AZECHI (With 11 Figures)
1. Introduction .. 104
2. Design of Culture Plant 105
3. Batch Culture ... 110
4. Semi-Continuous Culture 114
5. Continuous Culture 116
6. Application of Large-Scale Production to Obtain Useful Materials ... 120
References .. 120

I.5 Enhanced Production of Secondary Substances:
Addition of Artificial Accumulation Sites to Cultures
R. BEIDERBECK and B. KNOOP (With 8 Figures)
1. Introduction .. 123
2. Two-Phase Batch Culture 125
3. Cell Strain Selection by Means of Second Phases 131
References .. 134

I.6 Immobilization of Higher Plant Cells
R. D. HALL, M. A. HOLDEN, and M. M. YEOMAN
(With 1 Figure)
1. Introduction .. 136
2. Techniques for Plant Cell Immobilization 136
3. The Employment of Immobilized Cell Systems for the Production of Plant Metabolites 140
4. Other Uses of Immobilized Cells 149
5. Concluding Remarks 152
References .. 153

I.7 Nonfrozen Storage of Plant Cell Cultures and Its Effect on Metabolites
N. HIRAOKA (With 3 Figures)
1. Introduction .. 157
2. Viability of Cells After Nonfrozen Storage 158
3. Morphogenetic Ability After Nonfrozen Storage 162
4. Effect of Nonfrozen Storage on Metabolites 163
5. Concluding Remarks 165
References .. 165

I.8 Cryopreservation and the Retention of Biosynthetic Potential in Cell Cultures of Medicinal and Alkaloid-Producing Plants
Y. P. S. BAJAJ (With 8 Figures)
1. Introduction .. 169
2. Significance of Cryopreservation 169
Contents

3. Protocol and General Guidelines for Cryopreservation 171
4. Cryopreservation of Callus and Cell Suspensions 174
5. Cryopreservation of Protoplasts 178
6. Cryopreservation of Anthers and Pollen Embryos 179
7. Cryopreservation of Pollen 184
8. Genetic Stability and Biosynthetic Potential 184
9. Conclusions and Prospects 185
References 185

Section II Production of Medicinal and Aromatic Compounds by Plant Cell Cultures

II.1 Antitumor Compounds: Production by Plant Cell Cultures
M. MISAWA and T.M. NAKANISHI (With 13 Figures)
1. Introduction 191
2. Screening Method 192
3. Plant Tissue Culture 194
4. Antitumor Compound Production by Plant Tissue Culture 196
5. Conclusions and Prospects 205
References 206

II.2 L-DOPA Production in Plant Cell Cultures
S. TERAMOTO and A. KOMAMINE (With 13 Figures)
1. Introduction 209
2. In Vitro Production of L-DOPA 210
References 224

II.3 Shikonin: Production by Plant (Lithospermum erythrorhizon) Cell Cultures
Y. FUJITA (With 4 Figures)
1. Introduction 225
2. In Vitro Approaches 226
3. Conclusions and Prospects 234
References 235

II.4 Anthraquinone: Production by Plant Cell Culture
H. SUZUKI and T. MATSUMOTO (With 7 Figures)
1. Introduction 237
2. Review of In Vitro Production of Anthraquinones 240
3. In Vitro Studies on Anthraquinone Formation by Rubia cordifolia Cells 242
4. Conclusion 249
References 249
Contents

II.5 Morphinan Alkaloids: Biosynthesis in Plant (*Papaver* spp.) Tissue Cultures
K. K. KAMO and P. G. MAHLBERG (With 1 Figure)

1. Introduction .. 251
2. In Vitro Approaches to Alkaloid Production 252
3. Conclusion and Prospects 261
 References .. 261

II.6 Caffeine: Production by Plant (*Coffea* spp.) Cell Cultures
T. W. BAUMANN and P. M. FRISCHKNECHT (With 6 Figures)

1. Introduction: Caffeine and Man 264
2. Tissue and Cell Culture of Coffee 269
3. Growth and Productivity of Coffee Tissue Cultures 272
4. Biotransformation Potential 275
5. Conclusions and Prospects 276
 References .. 279

II.7 Berberine: Production Through Plant (*Thalictrum* spp.) Cell Cultures
A. IKUTA and H. ITOKAWA (With 5 Figures)

1. Introduction .. 282
2. In Vitro Approaches 284
3. Conclusion and Prospects 291
 References .. 292

II.8 Valepotriates: Production by Plant Cell Cultures
H. BECKER and S. CHAVADEJ (With 1 Figure)

1. Introduction .. 294
2. In Vitro Production of Valepotriates 295
3. Conclusions and Prospects 307
 References .. 307

II.9 Rosmarinic Acid: Production in Plant Cell Cultures
W. DE-EKNAMKUL and B. E. ELLIS (With 11 Figures)

1. Introduction .. 310
2. Establishment of Rosmarinic Acid-Producing Cultures 311
3. Characteristics of Rosmarinic Acid-Producing Cell Suspension Cultures 312
4. Summary and Prospects 326
5. Protocols ... 326
 References .. 327
Section III Biotechnology of Medicinal Plants

III.1 Cannabis sativa: In Vitro Production of Cannabinoids
G. PETRI (With 10 Figures)
1. Introduction .. 333
2. In Vitro Approaches 337
3. Summary and Conclusions 347
References .. 347

III.2 Centaurium erythraea Rafn: Micropropagation and the Production of Secoiridoid Glucosides
H. BAREŠOVÁ (With 6 Figures)
1. Introduction .. 350
2. In Vitro Approaches 352
3. Protocol ... 362
4. Conclusion and Prospect 364
References .. 365

III.3 Cinchona spp.: Micropropagation, and the In Vitro Production of Quinine and Quinidine
C.S. HUNTER (With 7 Figures)
1. Introduction .. 367
2. Cinchona In Vitro 372
3. Discussion .. 383
4. Protocol ... 384
References .. 384

III.4 Digitalis spp.: In Vitro Culture, Regeneration, and the Production of Cardenolides and Other Secondary Products
W. RÜCKER (With 8 Figures)
1. Introduction .. 388
2. Tissue and Cell Cultures 390
3. Regeneration .. 399
4. Cardenolides and Other Secondary Products 404
5. Concluding Remarks and Future Prospects 411
References .. 412

III.5 Duboisia spp.: In Vitro Regeneration, and the Production of Tropane and Pyridine Alkaloids
Y. KITAMURA (With 4 Figures)
1. Introduction .. 419
2. Establishment of Tissue Culture 421
3. Alkaloid Composition 427
4. Atropine Esterase Activity 432
5. Conclusion .. 434
References .. 434
III.6 *Hypoxis* spp.: Micropropagation and In Vitro Production of Hypoxoside
J. Van Staden and A.D. Bayley (With 4 Figures)

1. Introduction .. 437
2. In Vitro Approaches 441
References .. 445

III.7 *Ochrosia* spp.: In Vitro Production of Ellipticine, an Antitumor Agent
J.C. Chénieux, K.G. Ramawat, and M. Rideau
(With 9 Figures)

1. Introduction .. 448
2. In Vitro Approaches 453
3. Conclusion and Prospects 460
References .. 461

III.8 *Paeonia* spp.: In Vitro Culture and the Production of Paeoniflorin
H. Yamamoto (With 8 Figures)

1. Introduction .. 464
2. In Vitro Approaches 469
3. Conclusion and Prospects 479
References .. 480

III.9 *Panax ginseng* C.A. Meyer: Micropropagation and the In Vitro Production of Saponins
K.T. Choi (With 12 Figures)

1. Introduction .. 484
2. In Vitro Approaches 488
3. Conclusions and Prospects 498
References .. 499

III.10 *Rehmannia glutinosa*: Tissue Culture and Its Potential for Improvement
Z.-H. Xu (With 3 Figures)

1. Introduction .. 501
2. In Vitro Approaches 503
3. Conclusions and Prospects 511
References .. 512

III.11 *Rhamnus* spp.: In Vitro Production of Anthraquinones, Anthrones, and Dianthrones
A.J.J. Van Den Berg and R.P. Labadie (With 7 Figures)

1. Introduction .. 513
2. In Vitro Approaches 516
Contents XV

3. Conclusions and Prospects .. 527
References ... 527

III.12 Rhazya stricta Decaisne: In Vitro Culture, and the
Production of Indole Alkaloids
M.S. OMAR (With 6 Figures)

1. Introduction ... 529
2. Tissue Culture Studies on Rhazya stricta 533
3. Conclusion and Prospects ... 539
References ... 540

Subject Index ... 541
List of Contributors

AZECHI, S., Salt Technology Department, Japan Tobacco Inc., 2-1 Toranomon 2-chome, Minatoku, Tokyo 105, Japan

BAJAJ, Y.P.S., A-137, New Friends Colony, New Delhi 110065, India

BALANDRIN, M.F., NPI, University of Utah Research Park, 417 Wakara Way, Salt Lake City, UT 84108, USA

BARESOVA, H., Institute of Experimental Botany, Czechoslovak Academy of Sciences, Ke dvoru 15, 16630 Praha 6, Czechoslovakia

BAUMANN, T.W., Institute of Plant Biology, University of Zurich, Zollikerstr. 107, CH-8008 Zürich, Switzerland

BAYLEY, A.D., UN/CSIR Research Unit for Plant Growth and Development, Department of Botany, University of Natal, Pietermaritzburg 3200, Republic of South Africa

BECKER, H., Pharmakognosie und Analytische Phytochemie, Universität des Saarlandes, F.R. 14.3, D-6600 Saarbrücken, FRG

BEIDEBECK, R., Botanisches Institut der Universität Heidelberg, Im Neuenheimer Feld 360, D-6900 Heidelberg, FRG

BERG, A.J.J. VAN DEN, Department of Pharmacognosy, University of Utrecht, Catharijnesingel 60, NL-3511 GH Utrecht, The Netherlands

BERLIN, J., GBF – Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-3300 Braunschweig-Stockheim, FRG

CHAVADEJ, S., Plant Biotechnology Institute, National Research Council, Saskatoon, S7N 0W9, Canada

CHENIEUX, J.C., Laboratory of Plant Biotechnology, Faculty of Pharmacy, University of Tours, F-37042 Tours Cedex, France

CHOI, K.T., Division of Genetics and Physiology, Korea Ginseng & Tobacco Research Institute, Taejon, Korea

DE-EKNAMKUL, W., Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalong Kom University, Bangkok 10500, Thailand

ELLIS, B.E., Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
FRISCHKNECHT, P.M., Weidstr. 12, CH-8800 Thalwil, Switzerland

FUJITA, Y., Bioscience Research Laboratories, Mitsui Petrochemical Industries Ltd., 6-1-2 Waki-cho, Kuga-gun, Yamaguchi-ken 740, Japan

FURMANOWA, M., Department of Biology and Pharmaceutical Botany, Medical Academy, Banacha 1, 02-097 Warsaw, Poland

HALL, R.D., Foundation for Agricultural Plant Breeding, Droeven-daalsesteeg 1, 6700 AC Wageningen, The Netherlands

HASHIMOTO, T., Salt Administration Headquarters, Japan Tobacco Inc., 8th Floor, Shin-Kasumigaseki Building, 2-3 Kasumigaseki 3-chome, Chiyodakai, Tokyo 100, Niigata 950-21, Japan

HIRAOKA, N., Niigata College of Pharmacy, 5-13-2 Kamishinei-cho, Niigata 950-21, Japan

HOLDEN, M.A., Department of Botany, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JH, United Kingdom

HUNTER, C.S., Bristol Polytechnic, Bristol BS16 1QY, United Kingdom

IKUTA, A., Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachiohji-shi, Tokyo 192-03, Japan

ITOKAWA, H., Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachiohji-shi, Tokyo 192-03, Japan

KAMO, K.K., Department of Agriculture, Florist and Nursery Crops, Beltsville, MD 20705, USA

KITAMURA, Y., Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852, Japan

KLOCKE, J.A., NPI, University of Utah Research Park, 417 Wakara Way, Salt Lake City, UT 84108, USA

KNOOP, B., Botanisches Institut der Universität Heidelberg, Im Neuenheimer Feld 360, D-6900 Heidelberg, FRG

KOMAMINE, A., Biological Institute, Faculty of Science, Tohoku University, Sendai 980, Japan

LABADIE, R.P., Department of Pharmacognosy, University of Utrecht, Catharijnesingel 60, NL-3511 GH Utrecht, The Netherlands

MAHLBERG, P.G., Department of Biology, Indiana University, Bloomington, IN 47405, USA
MATSUMOTO, T., Plant Biotechnology Department, Central Research Institute, Japan Tobacco Inc., 6-2 Umegaoka, Midori-ku, Yokohama, Kanagawa 227, Japan

MISAWA, M., Bio International Inc., Suite 410, 170 Bloor St. W., Toronto Ontario, M5S 1T9 Canada

NAKANISHI, T. M., RI Lab., Department of Agriculture, University of Tokyo, Yayoi, Bunkyo-ku, Japan

OLSZOWSKA, O., Department of Biology and Pharmaceutical Botany, Medical Academy, Banacha 1, 02-097 Warsaw, Poland

OMAR, M. S., Faculty of Agriculture and Biology, Nuclear Research Center, P.O. Box 765, Baghdad, Iraq

PETRI, G., Semmelweis Medical University, Institute of Pharmacognosy, Üllői Str. 26, H-1085 Budapest, Hungary

RAMAWAT, K. G., Department of Botany, University of Jodhpur, Jodhpur 342001, India

RIDEAU, M., Laboratory of Plant Biotechnology, Faculty of Pharmacy, University of Tours, F-37042 Tours Cedex, France

RÜCKER, W., Institut für Pharmakognosie der Universität Wien, Währinger Strasse 25, A-1090 Wien, Austria

STADEN, J. VAN, UN/CSIR Research Unit for Plant Growth and Development, Department of Botany, University of Natal, Pietermaritzburg 3200, Republic of South Africa

SUZUKI, H., Plant Biotechnology Department, Central Research Institute, Japan Tobacco Inc., 6-2 Umegaoka, Midori-ku, Yokohama, Kanagawa 227, Japan

TERAMOTO, S., Department of Biology, Faculty of General Education, Kumamoto University, Kumamoto 860, Japan

XU, Z.-H., Shanghai Institute of Plant Physiology, Academia Sinica, Shanghai 200032, China

YAMAMOTO, H., School of Pharmacy, Hokuriku University, Kanagawa-machi, Kanazawa 920-11, Japan

YEOMAN, M. M., Department of Botany, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JH, United Kingdom