WELCOME

We are pleased to welcome you to Munich for the 11th International Conference on Solid-State Sensors and Actuators. We are meeting in Europe for the first time in the new millennium and on the twentieth anniversary year of the first meeting. The conference began in Boston in 1981, followed by meetings every other year in Delft, Philadelphia, Tokyo, Montreux, San Francisco, Yokohama, Stockholm, Chicago, Sendai, and now Munich. This series of meetings, the premier conference in its field, has since its beginning been the leading forum for reporting the latest research and developments in sensors, microactuators, MEMS and microsystems. These past conferences have established a very high standard of excellence that have guided the planning for this conference. As in previous years when it was held in Europe, the conference is taking place in conjunction with the Eurosensors Conference, the most important European conference on solid-state transducers.

The technical program of the conference consists of four days of formal presentations including an opening Plenary Session, twelve invited papers interspersed throughout the technical sessions, nearly 200 contributed oral papers in four parallel sessions, and two poster sessions featuring over 200 poster papers. In recognition of the 20th anniversary of the conference, Richard S. Muller of UC Berkeley will be giving a special plenary address entitled “MEMS-The View Back ... and the Vistas Ahead”.

The Digest of Technical Papers consists of two volumes and contains all oral and poster papers in four-page format. It is also available on CD-ROM. The Digest will be available for purchase after the conference through Springer Verlag Berlin Heidelberg New York, www.springer.de

As in previous meetings an exciting social program has been planned. A Welcome Reception on Sunday evening and a Monday Evening Reception at the world-famous Deutsches Museum will provide ample opportunity to interact informally while enjoying the historical setting.

On Wednesday evening the Conference Dinner will be held at the famous Löwenbräu Keller, featuring Bavarian music and special entertainment. The Spouse and Guest Program includes a City Sightseeing Tour, an exciting series of cultural events, and a post-conference tour to the King Ludwig II Musical and the enchanting Neuschwanstein castle.

On behalf of the International Steering Committee on Solid-State Sensors and Actuators, and the Eurosensors International Steering Committee, we would like to thank the 53 members of the three Regional Technical Program Committees headed by Hermann Sandmaier (Europe), Khalil Najafi (North America), and Susumu Sugiyama (Asia) for their excellent work in reviewing more than 850 submitted abstracts from 43 countries.

We also wish to express our sincere thanks to the members of the Executive Program Committee, including the Regional Program Chairmen and five Topic Specialists (M. Koudelka-Hep, R. Popovic, A. van den Berg, G. Wachtuta, and R. Wolfenbuttel) for the outstanding job they have done in finalizing the Technical Program. The members of the Local Organizing Committee, headed by Karl Kühl, also deserve much recognition for their efforts and services contributing to the conference.

We would also like to take this opportunity to thank all of the many authors who submitted their latest work to this conference. Sincere appreciation is also given to the plenary and other invited speakers.

We are particularly grateful to our sponsors and exhibitors for their financial contributions.

Finally we would like to personally thank you for attending the conference. The outstanding program of this meeting is designed to keep you up-to-date on the most recent advances in sensors, microactuators, MEMS and microsystems. We hope you will find the meeting exciting, inspiring, and enjoyable.

Ernst Obermeier
General Chairman

Helmut Seidel
Technical Program Chairman
Conference Site:

Gasteig Cultural, Educational and Conference Center, Munich, Germany

At the program committee meeting for TRANSUDERS '01 / EUROSENSORS XV

Standing (left to right)
Ernst Obermeier, General Chairman
Khalil Najafi, North American Chairman
Herman Sandmaier, European Chairman

Seated (left to right)
Susumu Sugiyama, Asian Chairman
Helmut Seidel, Technical Program Chairman
SPONSORS AND EXHIBITORS

Sponsors
AESCULAP AG & Co. KG, Germany
Robert Bosch GmbH, Germany
DaimlerChrysler AG, Germany
Deutsche Forschungsgemeinschaft, Germany
EADS Deutschland GmbH, Germany
Elsevier Science, The Netherlands
EUROPRACTICE, France
Fraunhofer IMS München, Germany
First Sensor Technology, Germany
GEFRAN S.P.A., Italy
HL-Planartechnik GmbH, Germany
Infineon Technology AG, Germany
Institute of Physics Publishing, United Kingdom
KELLER AG, Switzerland
Kistler Instrumente AG, Switzerland
MEMS Industry Group, USA
Regierung von Oberbayern, Germany
SCHMIDT Feintechnik GmbH, Germany
Springer Verlag Heidelberg, Germany
TEMIC, Germany
TU Berlin, MAT, Germany

Technical Co-Sponsoring
IEEE Electron Devices Society

Exhibitors
ARTECH HOUSE
Coventor GmbH
Elsevier Science
EUROPRACTICE
EV Group E. Thallner GmbH
First Sensor Technology GmbH
IEEE Sensors Journal
Institute of Physics Publishing
IntelliSense Corporation
Kluwer Academic Publishers
MEMSCAP GmbH
microFAB Bremen GmbH
Springer Verlag Heidelberg
Süss MicroTec AG
John Wiley & Sons
CONFERENCE COMMITTEES

General Conference Chairman
Ernst Obermeier, Berlin Univ. of Technology, Germany

Technical Program Committee
Technical Program Chairman
Helmut Seidel, TEMIC, Germany

Executive Program Committee
H. Seidel, TEMIC, Technical Program Chairman
H. Sandmaier, HSG-IMIT, European Chairman
K. Najafi, University of Michigan, N. American Chairman
S. Sugiyama, Ritsumeikan University, Asian Chairman
E. Obermeier, Berlin Univ. of Technology, General Chairman
M. Koudelka-Hep, University of Neuchatel, Topic Specialist
R. Popovic, EPFL Inst. de Microtechnique, Topic Specialist
A. van den Berg, University of Twente, Topic Specialist
G. Wachutka, Munich Univ. of Technology, Topic Specialist
R. Wolffenbuttel, Delft Univ. of Technology, Topic Specialist

European Program Committee
H. Sandmaier, HSG-IMIT, Germany (Chairman)
A. D’Amico, University of Rome, Italy
Y. Bäcklund, Mälardanen University, Sweden
S. Bouwstra, Coventor Inc., The Netherlands
G. Delapierre, CEA-Grenoble, France
J. Gardner, The University of Warwick, United Kingdom
R. T. Howe, UC Berkeley, USA
P. Ohlickers, 54.7 as, Norway
R. Popovic, EPFL Inst. de Microtechnique, Switzerland
P. Puers, Katholieke Universiteit Leuven, Belgium
T. Ryhänen, Nokia Research Center, Finland
H. Seidel, TEMIC, Germany (ex-officio)
G. Stemme, Royal Institut of Technology, Sweden
A. van den Berg, University of Twente, The Netherlands
G. Wachutka, Munich University of Technology, Germany
R. Wolffenbuttel, Delft University of Technology, The Netherlands

North American Program Committee
K. Najafi, University of Michigan, USA (Chairman)
S. Brown, Exponent Inc., USA
B. Frazier, Georgia Institute of Technology, USA
J. R. Gilbert, Coventor Inc., USA
J. Harrison, University of Alberta, Canada
R. T. Howe, UC Berkeley, USA
T. Kenny, Stanford University, USA
C.-J. Kim, UCLA, USA
L. Lin, UC Berkeley, USA
C. Nguyen, University of Michigan, USA
A. Northrup, Cepheid, USA
A. J. Ricco, ACLARA Biosciences Inc., USA
M. Schmidt, MIT, USA
T. Tang, Jet Propulsion Laboratory, USA
N. C. Tien, UC Davis, USA
J. White, MIT, USA
J. J. Yao, Rockwell Science Center, USA

Asian Program Committee
S. Sugiyama, Ritsumeikan University, Japan (Chairman)
S. Ando, The University of Tokyo, Japan
Y. Cheng, SRRC, Taiwan
M. Esashi, Tohoku University, Japan
H. Fujita, The University of Tokyo, Japan
A. Kohno, Hitachi, Japan
H. Kuwano, NTT, Japan
S. Lee, SAIT, Korea
N. Miura, Kyushu University, Japan
M. Okuyama, Osaka University, Japan
I. Satoh, Kanagawa Institute of Technology, Japan
H.-D. Seo, Yeungnam University, Korea
B.-K. Sohn, Kyungpook National University, Korea
Y. Sugiyama, AIST/MITI, Japan
K. Suzuki, NEC, Japan
H. Tadano, Toyota Inc., Japan
Y. Wang, Chinese Academy of Sciences, P. R. China
W. Wlodarski, RMIT University, Australia

Advisory Committee
J. Berger, VDI/VDE-Technologiezentrum, Teltow
S. Bütgenbach, TU Braunschweig, GMM
W. Ehrfeld, Institut für Mikrotechnik, Mainz
A. Engelhardt, TEMIC, Nürnberg
C. Hierold, Infineon Technology, München
J. Marek, Robert Bosch, Reutlingen
H. Meixner, Siemens, München
H. Reichl, IZM, Fraunhofer-Gesellschaft, München
V. Saile, Forschungszentrum Karlsruhe, Karlsruhe
H.-R. Tränkler, Universität der Bundeswehr München, AMA Wissenschaftsrat
R. Voss, Daimler Chrysler, Detroit, USA

Local Organizing Committee
K. Kühl, IMS, Munich (Chairman)
K. Bauer, EADS Germany, Munich
R. Jehring, Berlin University of Technology
E. Obermeier, Berlin University of Technology
M. Rose, TEMIC, Munich
H. Seidel, TEMIC, Munich
H. Steffes, Berlin University of Technology
E. Thielicke, Berlin University of Technology
Publications
K. Bauer, EADS Germany, Munich

Short Courses
G. Wachtuka, Munich University of Technology

Spouses Program
C. Schröttenhammer, CSM

International Steering Committee on Solid-State Sensors and Actuators
Ernst Obermeier, Chairman (Berlin Univ. of Tech., Germany)
Masayoshi Esashi, Vice-Chairman (Tohoku Univ., Japan)

European Members
Henry Baltes (ETH, Switzerland), John Brignell (Univ. of Southampton, United Kingdom), Gilles Delapierre (LETI, France), Per Ohlckers (54.7as, Norway), Juan R. Morante (Univ. of Barcelona, Spain), Ernst Obermeier (Berlin Univ. of Technology, Germany), Piet Bergveld (Univ. of Twente, The Netherlands), Jan-A. Schweitz (Uppsala Univ., Sweden)

North American Members
Shih-Chia Chang (General Motors, USA), D. Jed Harrison (University of Alberta, Canada), Antonio J. Ricco (ACLARA Biosciences, USA), G. Benjamin Hocker (Honeywell, USA), Richard S. Muller (Univ. of California Berkeley, USA), Khalil Najafi (Univ. of Michigan, USA), Martin A. Schmidt (MIT, USA)

Asian Members
Toyosaka Morizumi (Tokyo Institute of Tech., Japan), Shigeru Ando (Univ. of Tokyo, Japan), Minhang Bao (Fudan Univ., China), Masayoshi Esashi (Tohoku Univ., Japan), Hiroyuki Fujita (Univ. of Tokyo, Japan), Yukitsugu Hirota (Nissan Motor, Japan), Byung-Ki Sohn (Kyungpook National Univ., Korea)

Eurosensors International Steering Committee
A. D’Amico (Chairman, Italy), H. Baltes (Switzerland), K. Bethe (Germany), G. Blasquez (France), S. Bouwstra (Denmark), J. E. Brignell (United Kingdom), J. Dziuban (Poland), J. Gardner (United Kingdom), F. J. Gutierrez Monreal (Spain), P. Hauptmann (Germany), B. Hök (Sweden), G. Horvai (Hungary), I. Iliev (Bulgaria), R. S. Jachowicz (Poland), B. E. Jones (United Kingdom), S. Leppavuori (Finland), I. Lundström (Sweden), H. Meixner (Germany), B. M. J. Michaux (United Kingdom), S. Middelhoek (Netherlands), E. Obermeier (Germany), R. S. Popovic (Switzerland), R. Puers (Belgium), M. Prudenziatl (Italy), P. Ripka (Czech Republic), N. F.de Rooij (Switzerland), Ch. S. Roumenin (Bulgaria), V. A. Smyntyna (Ukraine), Y. Vlasov (Russia), R. F. Wolffenbuttel (Netherlands)
TECHNICAL PROGRAM

<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Location</th>
<th>Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, June 10</td>
<td>9:00 a.m. – 12:30 p.m.</td>
<td>forum Hotel</td>
<td>Short Courses 1 & 2</td>
</tr>
<tr>
<td></td>
<td>2:00 p.m. – 5:30 p.m.</td>
<td>Philharmonic Hall</td>
<td>Short Courses 3 & 4</td>
</tr>
<tr>
<td>Monday, June 11</td>
<td>9:00 a.m. – 10:50 a.m.</td>
<td>Philharmonic Hall</td>
<td>1A1 Plenary 1 p. 1</td>
</tr>
<tr>
<td></td>
<td>11:20 a.m. – 12:30 p.m.</td>
<td></td>
<td>1A2 Plenary 2 p. 11</td>
</tr>
</tbody>
</table>

Room A

<table>
<thead>
<tr>
<th>Time</th>
<th>Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 p.m. – 3:20 p.m.</td>
<td>1A3: MEMS Power Generation p. 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1B3: Acoustic Sensors p. 109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1C3: Packaging et Wafer Bonding p. 177</td>
<td></td>
</tr>
<tr>
<td>3:40 p.m. – 5:20 p.m.</td>
<td>1A4: Integrated Systems p. 51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1B4: Magnetic Sensors p. 135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1C4: Modelling et Simulation p. 239</td>
<td></td>
</tr>
</tbody>
</table>

Room B

<table>
<thead>
<tr>
<th>Time</th>
<th>Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 p.m. – 3:20 p.m.</td>
<td>2A1: Inertial Sensors 1 p. 429</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2B1: Optical Sensors p. 523</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2C1: Basic Physical Effects in MEMS p. 657</td>
<td></td>
</tr>
<tr>
<td>3:40 p.m. – 5:20 p.m.</td>
<td>2A2: Inertial Sensors 2 p. 455</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2C2: Actuators 1 p. 681</td>
<td></td>
</tr>
<tr>
<td>1:30 p.m. – 3:10 p.m.</td>
<td>2A3: Pressure et Force Sensors p. 481</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2B3: Micromachining et Etching p. 595</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2C3: Actuators 2 p. 731</td>
<td></td>
</tr>
</tbody>
</table>

Room C

<table>
<thead>
<tr>
<th>Time</th>
<th>Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 p.m. – 3:20 p.m.</td>
<td>3A1: Microthrusters et Microjets p. 881</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3B1: Materials 1 p. 979</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3C1: Microprobes et Nanodevices p. 1053</td>
<td></td>
</tr>
<tr>
<td>3:40 p.m. – 5:20 p.m.</td>
<td>3A2: Micropumps et Microvalves p. 915</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3B2: Materials 2 p. 997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3C2: MEMS Resonators p. 1093</td>
<td></td>
</tr>
<tr>
<td>1:30 p.m. – 3:10 p.m.</td>
<td>3A3: Microfluidics - Systems p. 945</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3B3: Surface Modification Ratio MEMS p. 1123</td>
<td></td>
</tr>
</tbody>
</table>

Room D

<table>
<thead>
<tr>
<th>Time</th>
<th>Program</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00 p.m. – 3:20 p.m.</td>
<td>1D3: Bio-Sensing Systems p. 321</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1D4: Technology for Biomedical Systems p. 407</td>
<td></td>
</tr>
<tr>
<td>3:40 p.m. – 5:20 p.m.</td>
<td>Tuesday, June 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8:30 a.m. – 10:00 a.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:20 a.m. – 12:00 p.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:30 p.m. – 3:10 p.m.</td>
<td></td>
</tr>
<tr>
<td>3:10 p.m. – 5:20 p.m.</td>
<td>Wednesday, June 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8:30 a.m. – 10:00 a.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:20 a.m. – 12:00 p.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:30 p.m. – 3:10 p.m.</td>
<td></td>
</tr>
<tr>
<td>3:10 p.m. – 5:20 p.m.</td>
<td>Thursday, June 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8:30 a.m. – 10:00 a.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:20 a.m. – 12:00 p.m.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:30 p.m. – 3:10 p.m.</td>
<td></td>
</tr>
</tbody>
</table>

Poster Session

- The papers in the contents pages are listed by sessions.
- The papers in both volumes are in numeric order by paper numbers.
CONTENTS

1A1 Plenary 1
Monday, June 11, 2001, (9.00 a.m. – 12.30 p.m.)

1A1.01 Technologies for Microturbomachinery -
M. Schmidt <invited speaker>, Massachusetts Inst. Tech.,
Cambridge, MA, USA
p. 2

1A1.02 MEMS Meets Insects -
I. Shimoyama <invited speaker>, K. Hoshino, Y. Ozaki,
S. Tamaki, S. Takeuchi, and T. Yasuda, U. Tokyo, Tokyo, Japan
p. 6

1A2 Plenary 2
Monday, June 11, 2001 (9.00 a.m. – 12.30 p.m.)

1A2.01 Retina Implant – A BioMEMS Challenge -
p. 12

1A2.02 MEMS – The View Back ... and the Vistas Ahead -
R. S. Muller <invited speaker>, U. California, Berkeley, CA, USA
p. 20

1A3 MEMS Power Generation
Monday, June 11, 2001 (2.00 p.m. – 3:20 p.m.)

1A3.01 Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining -
M. Strasser*, R. Aigner, and M. Franosch, Infineon Tech. AG,
Munich, Germany, G. Wachutka, (and*), Munich U. Tech.,
Munich, Germany
p. 26

1A3.02 A Combustion-Based MEMS Thermoelectric Power Generator -
S. Schaevitz, A. Franz, K. Jensen, and M. Schmidt, MIT,
Cambridge, MA, USA
p. 30

1A3.03 An Integrated Combustor-Thermoelectric Micro Power Generator -
C. Zhang, K. Najafi, L. Bernal, and P. Washabaugh,
U. Michigan, Ann Arbor, MI, USA
p. 34

1A3.04 A Laser-Micromachined Vibrational to Electrical Power Transducer for Wireless Sensing Systems -
N. Ching, H. Wong, W. Li, and P. Leong, Chin. U. Hong Kong,
Hong Kong, SAR, Z. Wen, Chongqing, China
p. 38

1A3.05P Micro Generator Systems -
K. Iizumida, N. Toyota, M. Yoshimura, Y. Muroi, T. Takenaka,
and K. Ikeda, Tokyo U., Tokyo, Japan
p. 42

1A3.06P The Modelling of a Piezoelectric Vibration Powered Generator for Microsystems -
P. Glynne-Jones, S. Beeby, E. James, and N. White,
U. Southampton, Southampton, UK
p. 46

1B3 Acoustic Sensors
Monday, June 11, 2001 (2:00 p.m. – 3:20 p.m.)

1B3.01 Bimorph Piezoelectric Acoustic Transducer -
M. Niu, U. Hawaii, Honolulu, HI, USA, E. Kim, USC,
Los Angeles, CA, USA
p. 110

1B3.02 High-Directivity Array of Ultrasonic Micro Sensor Using PZT Thin Film on Si Diaphragm -
K. Yamashita, H. Katata, and M. Okuyama, Osaka U., Osaka,
Japan, H. Miyoshi, G. Kato, and S. Aoyagi, Kansai U., Osaka,
p. 114

1B3.03 Self-Calibrating Micromachined Microphones with Integrated Optical Displacement Detection -
N. Hall and F. Degertekin, Georgia Tech., Atlanta, GA, USA
p. 118

1B3.04 Single-Chip Low-Voltage Analog-to-Digital Interface for Encapsulation with Electret Microphone -
O. Bajdechi and J. Huijsing, Delft U. Tech., Delft,
The Netherlands
p. 122

1B3.05P Silicon Microphones with Low Stress Membranes -
M. Füldner*, A. Hech, R. Aigner, and T. Bever, Infineon
Tech. AG, Munich, Germany, R. Lerch, and (*), U. Erlangen-Nuremberg, Erlangen, Germany
p. 126

1B3.06P Fabrication of a Biomimetic Corrugated Poly-silicon Diaphragm with Attached Single Crystal Silicon Proof Masses -
K. Yoo and J. Yeh, Cornell U., Ithaca, NY, USA, N. Tien, U.
California, Davis, CA, USA, C. Gibbons, Q. Su, W. Cui, and
R. Miles, SUNY, Binghamton, NY, USA
p. 130

1C3 Packaging & Wafer Bonding
Monday, June 11, 2001 (2.00 p.m. – 3:20 p.m.)

1C3.01 Selective Encapsulation Using a Polymeric or Bonded Silicon Constraint Dam for Media Compatible Pressure Sensor Applications -
G. Li, J. Schmiesing, A. McNeil, K. Neumann, B. Gogoi,
G. Bitko, S. Petrovic, J. Torres, M. Fuhrmann, and D. Monk,
Motorola Semicon., Tempe, AZ, USA
p. 178

1C3.02 Wafer-Level Packaging Using Localized Mass Deposition -
P. Chang-Chien and K. Wise, U. Michigan, Ann Arbor, MI, USA
p. 182
1C3.03 ‘Cavity-Micromachining’ Technology: Zero-Package Solution for Inertial Sensors –
R. Aigner, K. Oppermann, H. Kapels, and S. Kolb, Infineon Tech. AG, Munich, Germany,
p. 186

1C3.04 Accelerated Hermeticity Testing of a Glass-Silicon Package Formed by RTP Aluminum-to-Silicon Nitride Bonding –
M. Chiao and L. Lin, U. California, Berkeley, CA, USA
p. 190

1C3.05P An Ultra-Thin Hermetic Package Utilizing Electroplated Gold –
B. Stark and K. Najafi, U. Michigan, Ann Arbor, MI, USA
p. 194

1C3.06P Plastic BGA Package and Direct Filter Attachment for CMOS Thermal Imagers –
M. Schaafelbühl, O. Brand, and H. Baltes, ETH Zürich, Zurich, Switzerland
p. 198

1C3.07P Novel Optical Transceiver with Compound Parabolic Concentrator for Graded Index Plastic Optical Fiber –
Y. Matsumoto, A. Nakazono, T. Kitahara, and Y. Koike, Keio U., Yokohama, Japan
p. 202

1C3.08P Mounting of Si-Chips with Plastically Bent Cantilevers –
E. Gärtner, J. Frühauf, and E. Jänsch, Tech. U. Chemnitz, Chemnitz, Germany, B. Hannemann, U. Bremen, Bremen, Germany
p. 206

1C3.09P Anisotropic Conductive Adhesion of Microsystems Applied in the Instance of a Low Pressure Sensor –
p. 210

1C3.10P Nanosecond-Pulsed Laser Bonding with a Built-In Mask for MEMS Packaging Applications –
C. Luo, L. Lin, and M. Chiao, U. California, Berkeley, CA, USA
p. 214

1C3.11P Local Laser Bonding for Low Temperature Budget –
p. 218

1C3.12P An 8-Inch Wafer Bonding Apparatus with Ultra-High Alignment Accuracy Using Surface Activated Bonding (SAB) Concept –
T. Suga, T. Itoh, and M. Howlader, U. Tokyo, Tokyo, Japan
p. 222

1C3.13P Si-Si Bonding Using RF and Microwave Radiation –
K. Thompson, Y. Gianchandani, J. Booske, and R. Cooper, U. Wisconsin, Madison, WI, USA
p. 226

1C3.14P Anodic-Bonding on Glass Layers Prepared by a Spin-On Glass Process: Preparation Process and Experimental Results –
H. Quenzer and A. Schulz, Fraunhofer ISIT, Itzehoe, Germany, T. Kinkopf, and T. Helm, Fraunhofer IBMT, St. Ingbert, Germany
p. 230

1C3.15P Silicon Pyrex Electrostatic Bonding: Applicability to Industrial Microdevices Production –
G. Blasquez and P. Favaro, CNRS-LAAS, Toulouse, France
p. 234

1D3 Bio-Sensing Systems
Monday, June 11, 2001 (2:00 p.m. - 3:20 p.m.)

1D3.01 A Dielectrophoresis-Based Array Cytometer –
p. 322

1D3.02 Fabrication of Directly Synthesized DNA Chip Using Photolithography for Rapid and Parallel Gene Analysis –
K. Takahashi and M. Esashi, Tohoku U., Sendai, Japan, K. Seio, and M. Sekine, Tokyo Inst. Tech., Yokohama, Japan, O. Hino, Cancer Inst., Tokyo, Japan
p. 326

1D3.03 Immobilized Two Dimensional Protein Arrays by µ-Stamp and Protein Well –
F. Tseng, S. Lin, H. Huang, C. Huang, and C. Chieng, Nat. Tsing-Hua U., Hsinchu, Taiwan, ROC
p. 330

1D3.04 Electrochemical Gene Detection with PCR Chip –
p. 334

1D3.05P Soft Lithographic Techniques for Guidance of Hippocampal Neurons on Micro-Electrode Arrays –
p. 338

1D3.06P Development of a Superoxide Sensor by Superoxide Dismutase Immobilization –
K. Endo, S. Aoyagi, and K. Sakai, Waseda U., Tokyo, Japan, T. Miyasaka, N. Himi, and S. Mochizuki, Kawasaki Med. School, Japan
p. 342
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Institution/Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>103.07P</td>
<td>Bioelectronic Nose for Methyl Mercaptan Vapor Using a Xenobiotic Metabolizing System</td>
<td>K. Mitsubayashi and Y. Hashimoto</td>
<td>Tokai U., Kanagawa, Japan</td>
<td>346</td>
</tr>
<tr>
<td>103.10P</td>
<td>Flexible BIOMEMS with Electrode Arrangements on Front and Back Side as Key Component in Neural Prostheses and Biohybrid Systems</td>
<td>T. Stieglitz and M. Gross, Fraunhofer IBMT</td>
<td>St. Ingbert, Germany</td>
<td>358</td>
</tr>
<tr>
<td>103.12P</td>
<td>Development of Receptor Based Affinity Microassay</td>
<td>T. Frömrichen, A. Zimmermann, T. Nann, A. Sippel, and G. Urban, U. Freiburg</td>
<td>Freiburg, Germany</td>
<td>366</td>
</tr>
<tr>
<td>103.13P</td>
<td>An In-Line Osmometer for Application in Tissue Based Bio-Sensor Systems</td>
<td>N. Mourlas, N. Maluf*, and G. Kovacs</td>
<td>Stanford U., Stanford, CA, USA, (* and New Focus, Santa Clara, CA, USA)</td>
<td>370</td>
</tr>
<tr>
<td>103.19P</td>
<td>Analysis of Microelectrode-Recorded Signals from a Cardiac Cell Line as a Tool for Pharmaceutical Screening</td>
<td>K. Gilchrist, L. Gionvangelenti, and G. Kovacs, Stanford U., Stanford, CA, USA</td>
<td>p. 390</td>
<td></td>
</tr>
</tbody>
</table>

1A4 Integrated Systems

Monday, June 11, 2001 (3:40 p.m. - 5:20 p.m.)

| 1A4.02 | Monolithic Surface-Micromachined Sensor System for High Pressure Applications | H. Kapels, R. Aigner, Infineon Tech. AG, Munich, Germany, C. Kolle, Infineon Tech. AG, Villach, Austria | p. 56 |
| 1A4.04 | Sensitivity Enhancement of MEMS Inertial Sensors Using Negative Springs and Active Control | M. Handtmann*, R. Aigner, and A. Meckes, Infineon Tech. AG, Munich, Germany, G. Wachutka, (and*) Munich U. Tech., Munich, Germany | p. 64 |
1A4.05 A Smart Wind-Sensor Based on Thermal Sigma-Delta Modulation -
K. Makinwa and J. Huijsing, Delft U. Tech., Delft, The Netherlands
p. 68

1A4.06P High Mass and Spatial Resolution Mass Sensor Based on Resonating Nano-Cantilevers Integrated with CMOS -
p. 72

1A4.07P Position Sensing System Using Integrated Magnetic Sensors and Neural Networks -
p. 76

1A4.08P An Accurate CMOS Smart Temperature Sensor with Dynamic Element Matching and Second-Order Curvature Correction -
p. 80

1A4.09P The Sealing of Multiple Sensor Signals with a Wide Dynamic Voltage Range -
p. 84

1A4.10P Integrated Multi-Sensor System for Intelligent Data Carrier -
p. 88

1A4.11P Novel Surface-Micromachined Low-Power Fuses for On-Chip Calibration -
D. Maier-Schneider, S. Kolb, B. Winkler, and W. Werner, Infineon Tech. AG, Munich, Germany
p. 92

1A4.12P Sensors Linearity Improvement by Means of Dithering: Feasibility and Limits -
J. Holub and R. Smid, Czech Tech. U., Prague, Czech Republic
p. 96

1A4.13P Electronic Protection of the Conductivity Detector in a Micro Capillary Electrophoresis Channel -
p. 100

1A4.14P Sophisticated Interface Electronics for QCM -
J. Schröder, R. Borngräber, F. Eichelbaum, and P. Hauptmann, Otto-von-Guericke U., Magdeburg, Germany
p. 104

1B4.01 Reference Magnetic Actuator for Self Calibration of a Very Small Hall Sensor Array -
M. Demierre, S. Pesenti, J. Frounchi, P. Besse, and R. Popovic, Swiss Fed. Inst. Tech., Lausanne, Switzerland
p. 136

1B4.02 A Vertical Hall Device in CMOS High-Voltage Technology -
E. Schurig, M. Demierre, and R. Popovic, Swiss Fed. Inst. Tech., Lausanne, Switzerland, C. Schott, SENTRON AG, Zug, Switzerland
p. 140

1B4.03 Single Deposition GMR Sensors for Rotational Speed Sensing -
C. Giebeler, J. Ruigrok, and J. van Zon, Philips Res. Lab., Eindhoven, The Netherlands
p. 144

1B4.04 High Directional Sensitivity of Micromachined Magnetic Fluxgate Sensors -
R. Rub, S. Gupta, and C. Ahn, U. Cincinnati, Cincinnati, OH, USA
p. 148

1B4.05 Magnetic Sensor Based on Stabilized MOSFET Field Emitter Arrays -
p. 152

1B4.06P A New Highly Sensitive Parallel-Field Hall Microsensor -
C. Roumenin, D. Nikolov, A. Ivanov, and C. Mihailova, Bulgarian Acad. Sci., Sofia, Bulgaria
p. 156

1B4.07P High Sensitivity Hall Magnetic Sensors Using Planar Micro and Macro Flux Concentrators -
P. Drljaca, V. Slageter, F. Vincent, and R. Popovic, Swiss Fed. Inst., Lausanne, Switzerland
p. 160

1B4.08P Ferromagnetic Micromechanical Magnetometers -
H. Yang, N. Myung, J. Yee, D. Park, B. Yoo, M. Schwartz, K. Nobe, and J. Judy, U. California, Los Angeles, CA, USA
p. 164

1B4.09P A Study on Narrow-Range Angle Sensors Based on Wiggles in Angular Dependence of Pseudo-Hall Effect in Permalloy Thin Films -
p. 168
p. 172

1C Modelling & Simulation
Monday, June 11, 2001 (3:40 p.m. - 5:20 p.m.)

1C4.01 Improved Coupled-Field FE Analysis of Micro-machined Electromechanical Transducers - J. Wibbeler, CAD-FEM GmbH, Chemnitz, Germany, D. Scheibner and J. Mehner, Chemnitz U. Tech., Chemnitz, Germany
p. 240

1C4.02 Theoretical Analysis of the Tilting Effect in Silicon Micro-Switches - K. Suzuki and A. Pauly, NEC Corp., Ibaraki, Japan
p. 244

1C4.03 Macromodeling of an Electrostatic Torsional Actuator - R. Sattler and G. Wachutka, Munich U. Tech., Munich, Germany, F. Plötz, Infineon Tech. AG, Munich, Germany
p. 248

p. 252

1C4.05 An Analytical Model of the Piezojunction Effect for Arbitrary Stress and Current Orientations - F. Creemer and P. French, Delft U. Tech., Delft, The Netherlands
p. 256

1C4.06P Computational Methods for Reduced Order Modeling of Coupled Domain Simulations - F. Bennini, J. Mehner, and W. Dötzel, Chemnitz U. Tech., Chemnitz, Germany
p. 260

1C4.07P Automatic Reduced-Order Modeling in MEMCAD Using Modal Basis Functions - M. Varghese and S. Senturia, MIT, Cambridge, MA, USA, J. Gilbert, and V. Rabinovich, Coventor, Cambridge, MA, USA
p. 264

p. 268

1C4.09P Automatic Transfer from Bulk-Silicon Technology Simulation into the FEM-Environment - D. Zielke and R. Lieske, GEMAC mbH, Chemnitz, Germany, J. Will, Cadfem GmbH, Grafing, Germany
p. 272

p. 276

1C4.11P Layout Extraction for Integrated Electronics and MEMS Devices - B. Baidya and T. Mukherjee, Carnegie Mellon U., Pittsburgh, PA, USA
p. 280

1C4.12P A High Torque Density MEMS Magnetic Induction Machine - H. Köser and J. Lang, MIT, Cambridge, MA, USA, F. Cros, and M. Allen, Georgia Tech., Atlanta, GA, USA
p. 284

1C4.13P Modeling the Pull-In Parameters of Electrostatic Actuators with a Novel Lumped Two Degrees of Freedom Pull-In Model - O. Bochobza-Degani, Y. Yaniv, E. Socher, and Y. Nemirovsky, Technion, Haifa, Israel
p. 288

1C4.14P On the Effect of Residual Charges on the Pull-In Parameters of Electrostatic Actuators - O. Bochobza-Degani, E. Socher, and Y. Nemirovsky, Technion, Haifa, Israel
p. 292

1C4.15P Low Voltage Driven Capillary Electrophoresis Chips Using Travelling Electric Field Design - Y. Lin and W. Wu, Nat. Cheng Kung U., Tainan, Taiwan
p. 296

p. 300

1C4.17P Design and Simulation of Capacitive, Piezoresistive and Piezoelectric Triaxial Accelerometers Using a Highly Symmetrical Quad-Beam Structure - G. Li, Z. Li, Y. Jin, Y. Hao, D. Zhang, and G. Wu, Peking U., Beijing, China
p. 304

1C4.18P FET Pressure Sensor and Iterative Method for Modelling of the Device - R. Jachowicz and Z. Azgin, Warsaw U. Tech., Warsaw, Poland
p. 308
1C4.19P Dielectric Micro-hotplate for Integrated Sensors: An Electro-Thermo-Mechanical Analysis -
p. 312

1C4.20P On-Chip Integrated Silicon Bulk-Micromachined Soil Moisture Sensor Based on the DPHP Method -
p. 316

1D4 Technology for Biomedical Systems

Monday, June 11, 2001 (3:40 p.m. - 5:20 p.m.)

1D4.01 A Miniaturized Analysis System Based on Capillary Electrophoresis and Contactless Conductivity Detection -
J. Lichtenberg, E. Verpoorte, and N. de Rooij, U. Neuchâtel, Neuchâtel, Switzerland
p. 408

1D4.02 Fabrication of a Micro Needle for a Trace Blood Test -
K. Oka and S. Aoyagi, Kansai U., Osaka, Japan, Y. Isono, Ritsumeikan U., Shiga, Japan, G. Hashiguchi, Kagawa U., Kagawa, Japan, H. Fujita, Tokyo U., Tokyo, Japan
p. 412

1D4.03 A 256-Site 3D CMOS Microelectrode Array for Multipoint Stimulation and Recording in the Central Nervous System -
M. Gingerich, J. Hetke, D. Anderson, and K. Wise, U. Michigan, Ann Arbor, MI, USA
p. 416

1D4.04 A Disposable Intelligent Mosquito with a Reversible Sampling Mechanism Utilizing the Volume Phase Transition of a Gel -
H. Suzuki, T. Tokuda, and K. Kobayashi, U. Tsukuba, Ibaraki, Japan
p. 420

1D4.05 Micromachined Ultrasonic Ophthalmic Microsurgical Tool with Integrated Pressure Sensor -
X. Chen and A. Lal, U. Wisconsin, Madison, WI, USA
p. 424

1A2.01 Inertial Sensors for Automotive Applications -
H. Kuisma <invited speaker>, VTI Hamlin, Vantaa, Finland
p. 430

2A1.02 RASTA: The Real-Acceleration-For-Self-Test Accelerometer -
p. 434

2A1.03 Fiber-Optics MEMS Accelerometer with High Mass Displacement Resolution -
B. Guldimann, P. Dubois, P. Clerc, and N. de Rooij, U. Neuchâtel, Neuchâtel, Switzerland
p. 438

2A1.04 A Monolithic Three-Axis Accelerometer with Symmetric Properties -
H. Röjdjegard and G. Andersson, IMEGO Inst., Göteborg, Sweden
p. 442

2A1.05P 5-Axis Capacitive Motion Sensor Fabricated by Silicon Micromachining Technique -
p. 446

2A1.06P A 19-Element Shock Sensor Array for Bi-Directional Substrate-Plane Sensing Fabricated by Sacrificial LIGA -
S. McNamara and Y. Gianchandani, U. Wisconsin, Madison, WI, USA
p. 450

2B1 Optical Sensors

Tuesday, June 12, 2001 (8:30 a.m. - 10:00 a.m.)

2B1.01 Transmission-Type Optical Sensors Fabricated by Si Micromachining -
K. Hane <invited speaker>, M. Sasaki, Tohoku U., Sendai, Japan
p. 524

2B1.02 Miniature CO2 Gas Sensor (1 cm³) Using Silicon Microbolometers and Micro Variable Infrared Filter -
p. 528

2B1.03 CMOS Integrated Wavefront Sensor -
p. 532

2B1.04 Development of a Micro-Optical Distance Sensor with Electrical 1/0 Interface -
p. 536

2B1.05P Bias Dependent Photocurrent Collection in p-i-n a-Si:H/SiC:H Heterojunction -
p. 540
2B1.06P Photochemical Reaction by Nanometer-Scale Light Emitting Diode-Antifuses -
P. LeMinh, J. Holleman, H. Wallinga, and A. van den Berg,
U. Twente, Enschede, The Netherlands
p. 544

2B1.07P Fabrication and Optical Measurements of Multi-Slit Grating Based Infrared Micro-Spectrometer -
S. Kong, D. Wijngaards, G. de Graaf, and R. Wolffenbuttel,
Delft U. Tech., Delft, The Netherlands
p. 548

2B1.08P Si Micromachined Optical Encoder Based on Grating Imaging -
K. Hane, T. Endo, and M. Sasaki, Tohoku U., Sendai, Japan,
Y. Ito, Harmonic Drive Sys. Inc., Nagano, Japan
p. 552

2B1.09P CMOS Micromachined Infrared Imager Pixel -
H. Lakdawala and G. Fedder, Carnegie Mellon U.,
Pittsburgh, PA, USA
p. 556

2B1.10P Wavelength-Differential Imaging Using Variable Interferometer and Visualization of Gas Flow -
K. Yamashita and M. Okuyama, Osaka U., Osaka, Japan,
T. Nagashima, Hochiki Corp., Tokyo, Japan, S. Hatta,
R. Kajihara, and Y. Hamakawa, Ritsumeikan U., Shiga, Japan
p. 560

2B1.11P An Uncooled Infrared Sensor of Dielectric Bolometer Mode Using a New Detector Technique of Operation Bias Voltage -
M. Noda, K. Inoue, M. Ogura, H. Xu, S. Murakami,
H. Kishihara, and M. Okuyama, Osaka U., Osaka, Japan
p. 564

2B1.12P Pyroelectric High-Resolution Linear Array with 256 Micromachined Lithium Tantalate Pixels -
Dresden, Germany, J. Vollheim, N. Heß, G. Hofmann,
and (*), DIAS GmbH, Dresden, Germany
p. 568

2C1.01 Nano Electromechanical Systems -
M. Roukes <invited speaker>, Caltech, Pasadena, CA, USA
p. 658

2C1.02 Why Is (111) Silicon a Better Mechanical Material for MEMS? -
J. Kim and D. Cho, Seoul Nat. U., Seoul, Korea, R. Muller,
U. California, Berkeley, CA, USA
p. 662

2C1.03 Analyzing Fluid Compression Effects in Complicated Micromachined Devices -
X. Wang and J. White, MIT, Cambridge, MA, USA
p. 666

2C1.04 Physically-Based Modeling of Squeeze Film Damping by Mixed Level System Simulation -
G. Schrag, P. Voigt, and G. Wachutka, Munich U. Tech.,
Munich, Germany
p. 670

2C1.05P Microdischarge Device Fabricated in Silicon by Micromachining Technique with Pyramidal Cavity -
J. Chen, S. Park, J. Eden, and C. Liu, U. Illinois, Urbana, IL, USA
p. 674

2C1.06P Using the Pull-In Voltage as Voltage Reference -
E. Creatu, L. Rocha, and R. Wolffenbuttel, Delft U. Tech.,
Delft, The Netherlands
p. 678

2D1 Chemical Sensing 1
Tuesday, June 12, 2001 (8:30 a.m. - 10:00 a.m.)

2D1.01 The Emergence of Physical Chemosensors and Biosensors -
M. Vellekoop <invited speaker>, Delft U. Tech., Delft,
The Netherlands
p. 770

2D1.02 MEMS Spectrometer for Infrared Gas Analysis Based on a Tunable Filter of Porous Silicon -
Lausanne, Switzerland
p. 776

2D1.03 A Photoacoustic Gas Sensing Silicon Microsystem -
P. Ohlckers* and A. Ferber, Fifty-four point Seven, Oslo, Norway,
(and U. Oslo, Oslo, Norway), V. Dmitriev, and
G. Kirpilenko, Patinor Coat., Moscow, Russia
p. 780

2D1.04 High-Q Factor RF Planar Microcoils on Glass Substrates for NMR Spectroscopy -
C. Massin, G. Boero, P. Eichenberger, P. Besse, and R. Popovic,
Swiss Fed. Inst. Tech., Lausanne, Switzerland
p. 784

2D1.05P Micromachined Mass Spectrometer -
N. Sillon and R. Baptist, CEA/LETI, Grenoble, France
p. 788

2A2 Inertial Sensors 2
Tuesday, June 12, 2001 (10:20 a.m. - 12:00 p.m.)

2A2.01 A Symmetric Surface Micromachined Gyroscope with Decoupled Oscillation Modes -
S. Alper and T. Akin, Middle East Tech. U., Ankara, Turkey
p. 456

2A2.02 A Link Beam Driven, Triple Axis Angular Rate Sensor Based on a Double Gimbal Structure -
p. 460
2A2.03 New Approach for Frequency Matching of Tuning Fork Gyroscopes by Using a Nonlinear Driving Concept - O. Schwarzelbach, G. Fakas, and W. Nienkirchen, Fraunhofer ISIT, Itzehoe, Germany
p. 464

2A2.04 Self-Test for Resonant Structure Sensors Applied to a Tuning Fork Gyro and a Resonant Accelerometer - K. Bauer, W. Ficker, K. Koppenhagen, E. Stenzel, and J. Schalk, EADS Deutschl. GmbH, Munich, Germany, M. Aikele, TEMIC, Munich, Germany, F. Neubauer, DaimlerChrysler, Sindelfingen, Germany
p. 468

p. 472

2A2.06 A Bulk-Micromachined Single Crystal Silicon Gyroscope Operating at Atmospheric Pressure - S. Kim, J. Lee, C. Kim, and Y. Kim, Seoul Nat. U., Seoul, Korea
p. 476

2B2 Image Sensors
Tuesday, June 12, 2001 (10:20 a.m. - 12:00 p.m.)

p. 574

p. 578

p. 582

p. 586

2B2.05 A MEMS Non-Interferometric Differential Confocal Scanning Optical Microscope - W. Piyawattanametha, P. Patterson, G. Su, H. Toshiyoshi, and M. Wu, U. California, Los Angeles, CA, USA
p. 590

2C2 Actuators 1
Tuesday, June 12, 2001 (10:20 a.m. - 12:00 p.m.)

2C2.01 Parallel Linear Actuator System with High Accuracy and Large Stroke - S. Konishi, K. Ohno, and M. Munekicha, Ritsumeikan U., Shiga, Japan
p. 682

p. 686

p. 690

2C2.04 A Novel Micromachined Electromagnetic Loudspeaker for Hearing Aid - M. Cheng, W. Huang, R. Huang, and T. Chin, Nat. Tsing Hua U., Hsinchu, Taiwan
p. 694

2C2.05 An Active Guide Wire with Shape Memory Alloy Bending Actuator Fabricated by Room Temperature Process - T. Mineta, T. Mitsui, Y. Watanabe, and S. Kobayashi, Yamagata Res. Inst. Tech., Yamagata, Japan, Y. Haga, M. Esashi, Tohoku U., Sendai, Japan
p. 698

p. 702

2C2.07 Bistable Thin Film Composites with TiHfNi-Shape Memory Alloys - B. Winzek, T. Sterzl, and E. Quandt, CAESAR, Bonn, Germany
p. 706

2C2.08 SMA Microgripper System - M. Kohl, B. Krevet, and E. Just, FZK GmbH, Karlsruhe, Germany
p. 710

2C2.09 Compliant Microtransmissions for Rectilinear Electro-Thermal Actuators - L. Chu, J. Hetrick, and Y. Gianchandani, U. Wisconsin, Madison, WI, USA
p. 714

2C2.10 Bulk Micromachined Durable Air-Flow Microactuator Array for Robust Conveyance Systems - Y. Mita, M. Ara, A. Tixier, and H. Fujita, U. Tokyo, Tokyo, Japan
p. 718
2C2.11P A New Micro Pneumatic Actuator for Micro-
mechanical Systems -
S. Bütefisch, V. Seidemann, and S. Büttgenbach,
Braunschweig U. Tech., Braunschweig, Germany
p. 722

2C2.12P Influence of Elastic Deformation in Surface
Acoustic Wave Motor Friction Drive -
M. Kurosawa and H. Itoh, Tokyo Inst. Tech., Tokyo, Japan,
K. Asai, Matsushita Co., Kawasaki, Japan
p. 726

202.01 Design and Fabrication of a Hydrodynamic
Chromatography Chip -
M. Biom, J. Gardeniers, M. Elwenspoek, and A. van den Berg,
U. Twente, Enschede, The Netherlands, E. Chmela, and
R. Tijssen, U. Amsterdam, Amsterdam, The Netherlands
p. 794

202.02 Chemical Images by an Artificial Olfactory Bulb -
J. Mizsei and S. Ress, Budapest U. Tech., Budapest, Hungary
p. 798

202.03 Miniaturized Flame Ionization Detector for Gas
Chromatography -
S. Zimmermann, J. Müller. Tech. U. Hamburg-Harburg,
Hamburg, Germany, P. Krippner, and A. Vogel, ABB AG
Corp. Res., Heidelberg, Germany
p. 802

202.04 New Type of Thermal Conductivity Sensor for
Gas Detection -
P. Tardy, J. Coulon, and F. Menil, ENSEIRB U. Bordeaux,
Talence, France
p. 806

202.05 Impedance Imaging of Chemical and Bio-
Chemical Systems -
Inst. Tech., Chicago, IL, USA
p. 810

2A3 Pressure & Force Sensors
Tuesday, June 12, 2001 (1:30 p.m. - 3:10 p.m.)

2A3.01 A Piezoresistive Low-Pressure Sensor Fabricated Using Silicon-On-Insulator (SOI) for Harsh
Environment Applications -
J. von Berg, M. Gnielka, C. Cavalloni, and T. Bolthausner,
Kistler Instr. AG, Winterthur, Switzerland, T. Diepold, First
Sen. Tech., Berlin, Germany, B. Mukhopadhyay, and
E. Obermeier, Berlin U. Tech., Germany
p. 482

2A3.02 High Temperature Characterization of Ceramic
Pressure Sensors -
M. Fonseca, J. English, M. von Arx, and M. Allen, Georgia
Tech., Atlanta, GA, USA
p. 486

2A3.03 The NanoPirani - Presumably the World's
Smallest Pressure Sensor -
S. Reytjens, D. De Bruyker, and P. Puers, K. U. Leuven,
Leuven, Belgium
p. 490

2A3.04 Miniaturized Pressure Sensor Using a Free
Hanging Strain-Gauge with Leverage Effect for Increased
Sensitivity -
P. Melvås, E. Kälvesten, P. Enoksson, and G. Stemme,
Royal Inst. Tech., Stockholm, Sweden
p. 494

2A3.05 Capacitive Silicon Microsensor for Force and
Torque Measurement -
A. Meckes and R. Aigner, Infineon Tech. AG, Munich,
Germany, G. Dorfinger, and G. Wachutka, Munich U. Tech.,
Munich, Germany
p. 498

2A3.06P A New Vacuum Friction Gauge Based on a Si
Tuning Fork -
S. Kurth, K. Hiller, N. Zichner, J. Mehner, C. Kaufmann,
W. Dötzel, and T. Gessner, Chemnitz U. Tech., Chemnitz,
Germany, T. Iwert, and S. Biehl, µ-Sen MST GmbH,
Rudolstadt, Germany
p. 502

2A3.07P A Servo-Controlled Capacitive Pressure Sensor
with a Three-Mask Fabrication Sequence -
J. Park and Y. Gianchandani, U. Wisconsin, Madison, WI, USA
p. 506

2A3.08P High Temperature Pressure Sensor with
Monolithically Integrated CMOS Readout Circuit Based
on SIMOX Technology -
K. Kasten and W. Mokwa*, Aachen U. Tech., Aachen,
Germany, N. Kordas, H. Kappert, and (*I. Fraunhofer IMS,
Duisburg, Germany
p. 510

2A3.09P Fabrication and Testing of Single Crystalline
3C-SiC Piezoresistive Pressure Sensors -
C. Wu, S. Stefanescu, H. Kuo, C. Zorman, and M. Mehregany,
Case West. Reserve U., Cleveland, Ohio, USA
p. 514

2A3.10P Stable and Corrosion-Resistant Sapphire
Capacitive Pressure Sensor for High Temperature and
Harsh Environments -
S. Kimura, Y. Ishikura, T. Kataoka, M. Soeda, T. Masuda,
Y. Yoshikawa, and M. Nagata, Yamatake Corp., Kanagawa,
Japan
p. 518

2B3 Micromachining & Etching
Tuesday, June 12, 2001 (1:30 p.m. - 3:10 p.m.)

2B3.01 Micromachining of Piezoelectric MEMS -
J. Baborowski, N. Ledermann, S. Gentil, and P. Muraht,
Swiss Fed. Inst. Tech., Lausanne, Switzerland
p. 596
2B3.02 Methods for Fabrication of Released Nickel Comb-Drive Devices on CMOS -
A. Yalçinkaya, J. Ravnikilde, and O. Hansen, Tech. U. Denmark, Lyngby, Denmark, L. Johansen, IONAS A/S, Birkerød, Denmark
p. 600

2B3.03 Anisotropic Si Etching Technique for Optically Smooth Surfaces -
M. Sasaki, T. Fujii, Y. Li, and K. Hane, Tohoku U., Sendai, Japan
p. 604

2B3.04 Ultra-Fast Anisotropic Silicon Etching with Resulting Mirror Surfaces in Ammonia Solutions -
p. 608

2B3.05 Aspect Ratio and Crystallographic Orientation Dependence in Deep Dry Silicon Etching at Cryogenic Temperatures -
G. Craciun, M. Blauw, E. van der Orift, and P. French, Delft U. Tech., Delft, The Netherlands
p. 612

2B3.06 Fabrication of Micromechanical Structures of Titania and Titanium with Electrophoretic Deposition -
C. Marquordt and M. Allen, Georgia Tech., Atlanta, GA, USA
p. 616

2B3.07 Surface Micromachining Process for c-Si as Active Material -
A. Kovacs and U. Mescheder, U. Furtwangen, Furtwangen, Germany
p. 620

2B3.08 Advanced Sacrificial Poly-Si Technology for Fluidic Systems -
J. Berenschot, N. Tas, T. Lammerink, M. Elwenspoek, and A. van den Berg, U. Twente, Enschede, The Netherlands
p. 624

2B3.09 A New Processing Technique to Prevent Stiction Using Silicon Surfacing for SOI-MEMS -
N. Fujitsuka and J. Sakata, Toyota Inc., Aichi, Japan
p. 628

2B3.10 Electrochemical Etching for n-Type Silicon Using a Novel Etchant -
p. 632

2B3.11 A Novel Sub-Micron Gap Fabrication Technology Using Chemical-Mechanical Polishing (CMP): Application to Lateral Field Emission Device (FED) -
C. Lee and C. Han, KAIST, Daejon, Korea
p. 636

2B3.12 Micro- and Nanopatterning of Sensor Chips by Means of Macroporous Silicon -
p. 640

2B3.13 Microfluidic Channel Routing with Protected Convex Corners -
J. Kwon and E. Kim, U. S. California, Los Angeles, CA, USA
p. 644

2B3.14 A New Explanation of Mask-Corner Undercut in Anisotropic Silicon Etching: Saddle Point in Etching Rate Diagram -
p. 648

2B3.15 BrF3 Dry Release Technology for Large Free-standing Parylene MEMS -
T. Yao, X. Yang, and Y. Tai, California Tech., Pasadena, CA, USA
p. 652

2C3.01 Design, Fabrication and Testing of New Comb Actuators Realizing Three-Dimensional Continuous Motions -
p. 732

2C3.02 Optimal Shape Design for Electrodes of a Rotary Microactuator -
p. 736

2C3.03 Electrostatically-Driven-Leverage Actuator as an Engine for Out-of-Plane Motion -
H. Lin, H. Hu, W. Fang, and R. Huang, Nat. Tsing Hua U., Hsinchu, Taiwan
p. 740

2C3.04 Self-Reciprocating Radioisotope-Powered Cantilever -
H. Li, A. Lal, J. Blanchard, and D. Henderson, U. Wisconsin, Madison, WI, USA
p. 744

2C3.05 A Micromechanical Switch with Electrostatically Driven Liquid-Metal Droplet -
J. Kim, W. Shen, and C. Kim, U. California, Los Angeles, CA, USA, L. Latorre, Lab. Inf., Robot., Microelec., Montpellier, France
p. 748

2D3.01 Preparation of Thermally Stable Mesoporous Tin Oxide as a Semiconductor Gas Sensor Material - T. Hyodo, N. Nishida, Y. Shimizu, and M. Egashira, Nagasaki U., Nagasaki, Japan p. 816

3A1.01 Microsystems in Space Exploration - L. Stenmark <invited speaker>, Uppsala U., Uppsala, Sweden p. 882

3A1.03 High-Density Micromachined Acoustic Ejector Array for Micro Propulsion - T. Chou, K. Najafi, M. Muller, L. Bernal, and P. Washabaugh, U. Michigan, Ann Arbor, MI, USA p. 890

3A.06P A Micromachined Monolithic Inkjet Print Head with Dome Shape Chamber -
p. 902

3A.07P A Surface Micromachined Electrostatic Drop Ejector -
P. Galambos, K. Zavadil, R. Givler, and F. Peter, Sandia Nat. Labs, Albuquerque, NM, USA, A. Gooray, and G. Roller, Xerox Corp., Webster, NY, USA, J. Crowley, Electrostatic Apps., Morgan Hill, CA, USA
p. 906

3A.08P Performance Improvement in Domejet Inkjet Print Head by Measuring Temperature of Heater -
p. 910

3B.01 Epitaxial Technology for MEMS Applications -
M. Ishida <invited speaker>, Toyohashi U. Tech., Japan
p. 980

3B.02 Novel Low-Temperature CVD Process for Silicon Carbide MEMS -
p. 984

3B.03 Poly SiGe, a Promising Material for MEMS Post-Processing on Top of Standard CMOS Wafers -
S. Sedky, Cairo U., Giza, Egypt, A. Witvrouw, and K. Baert, IMEC, Leuven, Belgium
p. 988

3B.04 A Bonded-Micro-Platform Technology for Modular Merging of RF MEMS and Transistor Circuits -
A. Wong, Y. Xie, and C. Nguyen, U. Michigan, Ann Arbor, MI, USA
p. 992

3C.01 Microprobes & Nanodevices
Wednesday, June 13, 2001 (8:30 a.m. - 10:00 a.m.)

3C.01 The “Millipede" - More than 1000 Tips for Parallel and Dense Data Storage -
P. Vettiger <invited speaker>, G. Cross, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, and G. Binnig, IBM Zurich, Zurich, Switzerland
p. 1054

3C.02 Microsystem for Vertical Profile Measurement of High Aspect-Ratio Microstructures -
E. Lebrasseur, J. Pourcier, T. Bourouina, M. Ozaki, T. Masuzawa, and H. Fujita, U. Tokyo, Tokyo, Japan
p. 1058

3C.03 Nanometric Sensing and Processing with Micromachined Functional Probe -
T. Ono, X. Li, D. Lee, H. Miyashita, and M. Esashi, Tohoku U., Sendai, Japan
p. 1062

3C.04 Fabrication and Properties of Ultra Small Si Wire Arrays by Vapor-Liquid-Solid Growth with Circuits -
p. 1066

3C.05P Formation of Ultra-Shallow p/n Junctions using BF3 Implantation for the Fabrication of Improved Piezoresistive Cantilevers -
E. Cocheteau, C. Bergaud, L. Bary, and R. Plana, LAAS/CNRS, Toulouse, France, B. Belier, U. Paris-Sud, Orsay, France
p. 1070

3C.06P CMOS 10-Cantilever Array for Constant-Force Parallel Scanning AFM -
D. Lange, M. Zimmermann, C. Haglertner, O. Brand, and H. Batles, ETH Zurich, Zurich, Switzerland
p. 1074

3C.07P On a MEMS-Based Parametrically Amplified Atomic Force Sensor -
M. Wolfson, Cornell U., Ithaca, NY, USA, N. MacDonald, U. California, Santa Barbara, CA, USA
p. 1078

3C.08P A Longitudinally Vibrating Touch Probe Sensor Using PZT Thin Film Vibrator -
T. Kanda and T. Higuchi, U. Tokyo, Tokyo, Japan, M. Kurosawa, Tokyo Inst. Tech., Tokyo, Japan
p. 1082

3C.09P Fabrication of a Nanoneedle Array -
p. 1086

3C.10P Fabrication of Various Shapes Nano Structure Using Si Anisotropic Etching and Silicidation -
K. Kakushima, M. Mita, Y. Mita, and H. Fujita, U. Tokyo, Tokyo, Japan, G. Hashiguchi, Kagawa U., Japan
p. 1090

3D.01 Disposable Plastic Microfluidic Arrays for Applications in Biotechnology -
p. 1146

3D.02 Droplet Manipulation on a Superhydrophobic Surface for Microchemical Analysis -
p. 1150

3D1.04 Microfluidic Chips with MxN Continuous Sample Introduction Function Using Hydrodynamic Flow Switching - G. Lee, B. Hwei, and G. Huang, Nat. Cheng Kung U., Tainan, Taiwan p. 1158

3D1.05P PMMA (Poly-Methylmethacrylate) Microchips for On-Line DNA Preconcentration and Electrophoresis - Y. Lin, H. Ho, and S. Hou, Nat. Cheng Kung U., Tainan, Taiwan, C. Wu, ITRI, Hsinchu, Taiwan p. 1162

3D1.08P High Aspect Ratio Quartz Channels for Capillary Electrophoresis - L. Ceriotti, E. Verpoorte, and N. de Rooij, U. Neuchâtel, Neuchâtel, Switzerland, K. Weible, Weible Optech, Neuchâtel, Switzerland p. 1174

3D1.15P Manufacturing and Integration of Diffractive Optical Elements with Microfluidic CD Devices - F. Nikolajeff, O. Larsson, and O. Öhman, Amic AB, Uppsala, Sweden, P. Andersson, Gyros AB, Uppsala, Sweden p. 1202

3D1.16P Characterization of a Mixing Layer Micro-device - S. Lee, M. Wong, and Y. Zohar, Hong Kong U. Sci. Tech., Hong Kong p. 1206

3D1.17P Fabrication of Flexible, Implantable Micro-electrodes with Embedded Fluidic Microchannels - S. Metz, R. Holzer, and P. Renaud, Swiss Fed. Inst. Tech., Lausanne, Switzerland p. 1210

3D1.19P Universal Integrated Diagnostic Sample Preparation for Rapid Quantitative and Qualitative Nucleic Acid Analysis - R. Buser and D. Büchel, NTB U. Appl. Sci., Buchs, Switzerland, D. Bächli, ETH Zurich, Zurich, Switzerland, P. Day, Children's Hospital, Zurich, Switzerland p. 1218

3A2.01 The Optimized SMA Micro Pump Chip Applicable to Liquids and Gases - K. Ikuta, T. Hasegawa, and T. Adachi, Nagoya U., Nagoya, Japan p. 916
3A2.02 A Micromachined Silicon Low-Voltage Parallell-Plate Electrokinetic Pump -
p. 920

3A2.03 Pneumatic Silicon Microvalves with Piezo-electric Actuation -
S. Kluge, G. Neumayer, U. Schaber, and M. Wackerle, Fraunhofer IMS, Munich, Germany, M. Maichl, P. Post, and M. Weinmann, Festo AG, Esslingen, Germany, R. Wanner, Beurer GmbH, Ulm, Germany
p. 924

3A2.04 Electrostatic Microvalves in Silicon with 2-Way-Function for Industrial Applications -
p. 928

3A2.05 Micro Flow Switches Using Thermal Gelation of Methyl Cellulose for Biomolecules Handling -
p. 932

3A2.06P Batch Fabrication of Silicon Micropumps -
p. 936

3A2.07P High-Speed and Bi-Stable Electrolysis-Bubble Actuated Gate Valves -
A. Papavasiliou, A. Pisano, and D. Liepmann, U. California, Berkeley, CA, USA
p. 940

3B2 Materials 2
Wednesday, June 13, 2001 (10:20 a.m. - 12:00 p.m.)

3B2.01 Performance Characterization of Ultra-Thin N-Type Piezoresistive Cantilevers -
Y. Liang, S. Ueng, and T. Kenny, Stanford U., Stanford, CA, USA
p. 998

3B2.02 Single Crystalline Silicon Nano Wire Piezoresistors for Mechanical Sensors -
T. Toriyama, Y. Tanimoto, and S. Sugiyama, Ritsumeikan U., Shiga, Japan
p. 1002

3B2.03 The Temperature-Stable Piezoelectric Material GaP04 and its Sensor Applications -
P. Worsch, P. Krempfl, F. Krispel, C. Reiter, H. Thanner, and W. Wallnöfer, AVL List GmbH, Graz, Austria
p. 1006

3B2.04 Thermophysical Characterisation of Poly Si02Ge03 for Use in Thermoelectric Devices -
D. Wijngaards, S. Kong, P. Sarro, and R. Wolffenbuttel, Delft U. Tech., Delft, The Netherlands
p. 1010

3B2.05 Investigation of 4H-SiC as a New Material for Hall or Temperature Sensors Working up to 500°C -
p. 1014

3B2.06P PZT Thin Films for Piezoelectric Micro-actuator Applications -
p. 1018

3B2.08P High Aspect Ratio Soft Micromolding of Piezoceramic Thick Films -
T. Rosqvist and S. Johansson, Uppsala U., Uppsala, Sweden
p. 1022

3B2.09P Properties of 1-3 PZT Composite for Ultrasonic Transducer Array Fabricated by Micro-Pressing and Dicing Methods -
p. 1026

3C2 MEMS Resonators
Wednesday, June 13, 2001 (10:20 a.m. - 12:00 p.m.)

3C2.01 A 10-MHz Micromechanical Resonator Pierce Reference Oscillator for Communications -
S. Lee, M. Demirci, and C. Nguyen, U. Michigan, Ann Arbor, MI, USA
p. 1094

3C2.02 High Q Achieved in Microwave Inductors Fabricated by Parallel Self-Assembly -
G. Dahlmann and E. Yeatman, Imperial College, London, UK, P. Young, I. Robertson, and S. Lucyszyn, U. Surrey, Guildford, UK
p. 1098

3C2.03 14 MHz Micromechanical Oscillator -
p. 1102

3C2.04 Much Enlarged Resonant Amplitude of Micro-Resonator with Two-Degree-of-Freedom (2-DOF) Mechanical Coupling Scheme -
X. Li, T. Ono, and M. Esashi, Tohoku U., Sendai, Japan, R. Lin, Nanyang Tech. U., Singapore, (* and Chinese Acad. Sci., Shanghai, China)
p. 1106
3C2.05 Q-Optimized Lateral Free-Free Beam Micro-mechanical Resonators

W. Hsu, J. Clark, and C. Nguyen, Michigan, Ann Arbor, MI, USA

p. 1110

3C2.06P Embedded Solenoid Inductors for RF CMOS Power Amplifiers

Y. Yoon, E. Chen, M. Allen, and J. Laskar, Georgia Tech., Atlanta, GA, USA

p. 1114

3C2.07P Measurement Techniques for Capacitively-Transduced VHF-to-UHF Micromechanical Resonators

J. Clark, W. Hsu, and C. Nguyen, Michigan, Ann Arbor, MI, USA

p. 1118

3D2 Polymer-Based Microsystems

Wednesday, June 13, 2001 (10:20 a.m. - 12:00 p.m.)

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D2.01</td>
<td>A Foldable Artificial Lens with an Integrated Transponder System for Measuring Intraocular Pressure</td>
<td>S. Ullerich, W. Mokwa*, and U. Schmakenberg, Aachen U. Tech., Aachen, Germany, G. vom Bügel (and *), Fraunhofer IMS, Duisburg, Germany</td>
</tr>
<tr>
<td>3D2.02</td>
<td>Design of a Self-Contained 3D Microvalve in PDMS</td>
<td>V. Namasivayam, Michigan, Ann Arbor, MI, USA, R. Liu, and P. Grodzinski, Motorola PSRL, Tempe, AZ, USA, B. Towe, Arizona State U., Tempe, AZ, USA</td>
</tr>
<tr>
<td>3D2.04</td>
<td>Modular Biosystem for the Culture and Characterisation of Scarce Epithelial Cell Tissues</td>
<td>S. Hediger, G. Chambon, A. Sayah, and M. Gijs, Swiss Fed. Inst. Tech., Lausanne, Switzerland, W. Hunziker, U. Lausanne, Lausanne, Switzerland</td>
</tr>
<tr>
<td>3D2.05</td>
<td>A New Fixed-Volume Metering Micro-dispenser Module Based on sPROMs Technology</td>
<td>A. Puntambekar, H. Cho, J. Choi, and C. Ahn, Cincinnati, Cincinnati, OH, USA, S. Kim, and V. Makhijani, CFD Res. Corp., Huntsville, AL, USA</td>
</tr>
</tbody>
</table>

3A3 Microfluidics - Systems

Wednesday, June 13, 2001 (1:30 p.m. - 3:10 p.m.)

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A3.02</td>
<td>Characterization of a Micro-Mixing, Pumping, and Valving System</td>
<td>A. Deshmukh, D. Liepmann, and A. Pisano, USA, California, Berkeley, CA, USA</td>
</tr>
<tr>
<td>3A3.03</td>
<td>Smart Passive Microfluidic Systems Based on Ferrofluids for µTAS Applications</td>
<td>R. Pérez-Castillejos, J. Esteve, and M. Acero, CSIC, Barcelona, Spain, A. Menz, IMSAS, Bremen, Germany, K. Kriz, Lund U., Lund, Sweden</td>
</tr>
<tr>
<td>3A3.04</td>
<td>A Frequency Addressable Ultrasonic Microfluidic Actuator Array</td>
<td>V. Kaajakari, A. Sathaye, and A. Lal, University of Wisconsin, Madison, WI, USA</td>
</tr>
<tr>
<td>3A3.05</td>
<td>Stainless Steel-Based Integrated Mass-Flow Controller for Reactive and Corrosive Gases</td>
<td>K. Hirata, D. Sim, and M. Esashi, Tohoku University, Sendai, Japan</td>
</tr>
<tr>
<td>3A3.06P</td>
<td>Thermal Bubble Powered Microfluidic Mixer with Gas Bubble Filter</td>
<td>J. Tsai, Michigan, Ann Arbor, MI, USA, L. Lin, University of California, Berkeley, CA, USA</td>
</tr>
<tr>
<td>3A3.08P</td>
<td>Development of a High Density, Planar, Modular Microfluidic Interconnect System</td>
<td>R. Darling, University of Washington, Seattle, WA, USA</td>
</tr>
</tbody>
</table>

3B3 Surface Modification

Wednesday, June 13, 2001 (1:30 p.m. - 3:10 p.m.)

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B3.01</td>
<td>Low Force Electrical Contact Measurements Using Piezoresistive MEMS Cantilevers to Characterize Thin-Film Metallization</td>
<td>B. Pruitt, D. Choi, J. Florando, W. Nix, and T. Kenny, Stanford U., Stanford, CA, USA, R. Martens, S. Wenzel, and C. Reynolds, Formfactor Inc., USA</td>
</tr>
</tbody>
</table>

3B3.04 Ultra-hydrophobic Surface Selectively Modified by Pulse Electrodeposition from Aqueous Dispersion of PTFE Particles - T. Abe and M. Esashi, Tohoku U., Sendai, Japan p. 1044

3C3 High Aspect Ratio MEMS Wednesday, June 13, 2001 (1:30 p.m. - 3:10 p.m.)

3C3.05 Three-Dimensional Micromachining of Silicon Nitride for Power Microelectromechanical Systems - S. Sugimoto, S. Tanaka, J. Li, T. Genda, R. Watanabe, and M. Esashi, Tohoku U., Sendai, Japan p. 1140

3D3 Electrochemical Sensors Wednesday, June 13, 2001 (1:30 p.m. - 3:10 p.m.)

3D3.02 A Simple pH Detector Based on an Organic Field-Effect Transistor - C. Bartic, A. Campitelli, and S. Borghs, IMEC, Leuven, Belgium, B. Palan, Czech Tech. U., Prague, Czech Republic p. 1250

4A1 Commercialization Thursday, June 14, 2001 (8:30 a.m. - 10:00 a.m.)

4A1.01 Increasing Probability of a Success for High-Tech Startup Companies - J. Bryzek <invited speaker>, Transparent Networks Inc., Santa Clara, CA, USA p. 1268

4A1.02 Competitive Position of the Micro System Technologies for Wavelength Handling in all-optical Networks for Telecom - E. Mounier and J. Eloy, Yole Dévé, Lyon, France p. 1276

4A1.04 MEMS Commercialization: Slow but Steady - R. Payne, Andover, MA, USA p. 1284

4B1 Materials Characterization Thursday, June 14, 2001 (8:30 a.m. - 10:00 a.m.)

4B1.01 Friction and Wear Properties of Microstructures in MEMS - W. Wang <invited speaker>, Y. Wang, H. Bao, and B. Xiong, Chinese Acad. Sci., Shanghai, China, M. Bao, Fudan U., Shanghai, China p. 1354
4B.1.02 Electronic Transport Mechanisms in WO₃-Based Ultra-Thin Film Chemiresistive Sensors -
S. Moulzolf and R. Lad, U. Maine, Orono, ME, USA
p. 1358

4B.1.03 Fast Thermal Characterization of Nano-Liter Fluid Volumes -
H. Ernst, A. Jachimowicz, B. Birkenmeier, B. Bohl, and G. Urban, U. Freiburg, Freiburg, Germany
p. 1362

4B.1.04 Effect of Temperature on Mechanical Properties of Polysilicon -
W. Sharpe Jr., M. Eby, and G. Coles, Johns Hopkins U., Baltimore, MD, USA
p. 1366

4B.1.05P The Design and Analysis of Shock Resistant Microsystems (MEMS) -
V. Srikar and S. Senturia, MIT, Cambridge, MA, USA
p. 1370

4B.1.06P In-Situ Mechanical Characterization of a 100 Nanometer Thick Free Standing Aluminum Film in TEM Using MEMS Force Sensors -
M. Haque and M. Saif, U. Illinois, Urbana, IL, USA
p. 1374

4B.1.07P Tensile Testing System for Sub-Micrometer Thick Films -
T. Tsuchiya*, M. Shikida, and K. Sato, Nagoya U., Nagoya, Japan, (* and Toyota Inc., Japan)
p. 1378

4B.1.08P Fabrication, Test and Simulation of a Parylene Diaphragm -
p. 1382

4B.1.09P Silicon, Parylene, and Silicon/Parylene Micro-Needles for Strength and Toughness -
P. Stupar and A. Pisano, U. California, Berkeley, CA, USA
p. 1386

4B.1.10P Uniaxial Stress Effect on Copper Energy Levels in Silicon -
p. 1390

4B.1.11P Fracture Properties of LPCVD Silicon Nitride Thin Films from the Load-Deflection of Long Membranes -
J. Yang, C. Peters, and O. Paul, U. Freiburg, Freiburg, Germany
p. 1394

4B.1.12P Temperature Dependent Thermal Conductivities of CMOS Layers by Micromachined Thermal van der Pauw Test Structures -
S. Hafizovic and O. Paul, U. Freiburg, Freiburg, Germany
p. 1398

4B.1.13P A Study on Nonlinear Torsional Characteristics of Polyimide Hinges -
p. 1402

4B.1.14P Die-Level Characterization of Bulk-Etched MEMS Using Resonant Ultrasound Spectroscopy -
H. Guo and A. Lal, U. Wisconsin, Madison, WI, USA
p. 1406

4B.1.15P The Silicon Optical Absorption Coefficient Revisited -
R. Wolffenbuttel, Delft U. Tech., Delft, The Netherlands
p. 1410

4B.1.16P n-Type β-SiC Piezoresistance Analysis under High Temperature and High Impurity Concentration -
p. 1414

4B.1.17P Strength and Leak Testing of Plasma Activated Bonded Interfaces -
M. Visser and A. Hanneborg, U. Oslo, Oslo, Norway, S. Weichel and R. de Reus, ADC Denmark, Farum, Denmark
p. 1418

4B.1.18P Characteristics of Low Force Contact Process for MEMS Probe Cards -
T. Itoh, K. Kataoka, and T. Suga, U. Tokyo, Tokyo, Japan
p. 1422

4B.1.19P Analysis of Ultrasonic Wire Bonding by In-Situ Piezoresistive Microsensors -
J. Schwizer, O. Brand, and H. Baltes, ETH Zurich, Zurich, Switzerland, M. Mayer, ESEC Cham, Switzerland
p. 1426

4B.1.20P A Tactile Sensor Instantaneously Evaluating Friction Coefficients -
K. Nakamura and H. Shinoda, U. Tokyo, Tokyo, Japan
p. 1430

4C.1.01 Integrated RF MEMS for Single Chip Radio -
p. 1528

4C.1.02 Fabrication of a 94 GHz LIGA Klystrino -
p. 1532

4C1.05P A Novel MEMS LC Tank for RF Voltage Controlled Oscillator (VCO) - S. Seok, C. Nam, W. Choi, and K. Chun, Seoul Nat. U., Seoul, Korea, S. Choi, YeungNam U., Kyongbuk, Korea p. 1544

4C1.08P Reducing the Effect of Parasitic Capacitance on MEMS Measurements - P. Rantakari, M. Koskenvuori, T. Lamminmäki, and I. Tittonen, Helsinki U. Tech., Helsinki, Finland, J. Kiihamäki, VTT, Finland p. 1556

4C1.09P Performance and Dynamics of a RF MEMS Switch - F. Plötz*, S. Michaelis, G. Fattinger, and R. Aigner, Infineon Tech. AG, Munich, Germany, R. Noé, and (*), U. Paderborn, Paderborn, Germany p. 1560

4C1.10P Fabrication of a Solenoid-Type Microwave Transformer - Y. Choi, J. Yoon, B. Kim, E. Yoon, and C. Han, KAIST, Daejon, Korea p. 1564

4D1.05P The Mechanical Property of the Coiled Axon of Meissner Corpuscles for Human Tactile Sensing and its Application to a Biomimetic Tactile Sensor with a Helical Structure - T. Nara and S. Ando, U. Tokyo, Tokyo, Japan p. 1666

4A2.01 Micromirrors for Adaptive-Optics Arrays - M. Helmbrecht, U. Srinivasan, C. Rembe, R. Howe, and R. Muller, U. California, Berkeley, CA, USA p. 1290

4A2.02 Dual-Mode Micromirrors for Optical Phased Array Applications - U. Krishnamoorthy, K. Li, and J. Heritage, U. California, Davis, CA, USA, K. Yu, D. Lee, and O. Solgaard, Stanford U., Stanford, CA, USA p. 1294

4A2.04 Micromachined Multi-Lever Linkage Angular Motion Amplifier - H. Lin, M. Wu, W. Fang, and R. Huang, Nat. Tsing Hua U., Hsinchu, Taiwan p. 1302

4A2.05 Mechanical Behavior of a Silicon Micro-Optical Attenuator - K. Suzuki, T. Mercier, T. Oguma, and T. Shibuya, NEC Corp., Ibaraki, Japan p. 1306

4A2.06P High Resolution Micromachined Scanning Mirror - H. Lin, H. Hu, W. Fang, and R. Huang, Nat. Tsing Hua U., Hsinchu, Taiwan p. 1310

4B2.01 Sensitive Thermal Flow Sensor Based on a Micromachined Two-Dimensional Resistor Array - J. van Baar, R. Wiegerink, G. Krijnen, T. Lammerink, and M. Elwenspoek, U. Twente, Enschede, The Netherlands
p. 1436

p. 1440

p. 1444

p. 1448

p. 1452

p. 1456

p. 1460

p. 1464

p. 1468

4B2.10P Low-Cost Flow Transducer Fabricated with the AMANDA-Process - D. Dittmann, R. Ahrens, Z. Rummler, K. Schloote-Holubek, and W. Schomburg, FZK, Karlsruhe, Germany
p. 1472

p. 1476

p. 1480

4B2.13P A Resonant Temperature Sensor Based on Electrical Spring Softening - W. Hsu, J. Clark, and C. Nguyen, U. Michigan, Ann Arbor, MI, USA
p. 1484

p. 1488

p. 1492

p. 1496

p. 1500

4C2 3D MEMS

4C2.01 3D MEMS Fabrication Using Low-Temperature Wafer Bonding with Benzocyclobutene (BCB) - T. Chou and K. Najafi, U. Michigan, Ann Arbor, MI, USA
p. 1570

4C2.02 Novel Shaped Microstructures Processed by Deep X-Ray Lithography - S. Sugiyama and H. Ueno, Ritsumeikan U., Shiga, Japan
p. 1574

4C2.03 Direct Microfabrication Using an X-Ray Micro-Beam - T. Katoh and Y. Zhang, Sumitomo Heavy Ind. Ltd., Tokyo, Japan, Y. Kagoshima, Y. Tsusaka, and J. Matsuji, Himeji Inst. Tech., Hyogo, Japan
p. 1578

4C2.05 Fabrication of an Electrostatic Lens Array with Separate Electrodes and Shield Membranes Using UV-Liga Process - H. Ono, K. Nagae, Y. Shimada, H. Maehara, T. Yagi, M. Muraki, and M. Okunuki, Canon Inc., Kanagawa, Japan p. 1586

4C2.06P A 3-Dimensional Wafer-Level Stacking Technology with Precise Vertical Interconnections to MEMS Applications - K. Park, K. Lee, T. Nakamura, T. Morooka, Y. Igarashi, H. Kurino, and M. Koyanagi, Tohoku U., Sendai, Japan p. 1590

4C2.10P Fabrication Method for Out-of-Plane Coil by Surface Micromachining - M. Gel, S. Takeuchi, and I. Shimoyama, U. Tokyo, Tokyo, Japan p. 1602

4C2.11P Demonstration of Microscale Heat Exchanger for a Silicon Micro Gas Turbine Engine - S. Sullivan, X. Zhang, A. Ayden, and J. Brisson, MIT, Cambridge, MA, USA p. 1606

4C2.12P Magnetic Flux Generator for Balanced Membrane Loudspeaker - J. Rehder and P. Rombach, Microtronic A/S, Lyngby, Denmark, O. Hansen, Tech. U. Denmark, Lyngby, Denmark p. 1610

4D2 Gas Sensors 1
Thursday, June 14, 2001 (10:20 a.m. - 12:00 p.m.)

4D2.03 Diffusion Equation-Based Study of Thin Film Semiconductor Gas Sensor - Response Transient - N. Matsunaga, G. Sakai, K. Shimano, and N. Yamazoe, Kyushu U., Fukuoka, Japan p. 1680

4D2.06P Solid State Dissolved Oxygen Sensor Test Matrix Using a Pulsed-Plasma Deposited PTFE Film - G. McLaughlin, K. Braden, B. Franc, and G. Kovacs, Stanford U., Stanford, CA, USA p. 1692

4D2.08P Thermal Optimization of a Novel Micro Gas Sensor Array with Different Operating Temperatures - W. Chung, Dongseo U., Pusan, Korea, J. Lim, and D. Lee, Kyungpook Nat. U., Taegu, Korea p. 1700

4D2.11P A Data Acquisition System for a Hand-Held Electronic Nose (H2EN) - H. Chueh, J. Hatfield, P. Wareham, K. Persaud, and P. Payne, UMIST, Manchester, UK p. 1712

4A3 Optical MEMS 2
Thursday, June 14, 2001 (1:30 p.m. - 3:10 p.m.)

4A3.01 Fabrication and Experiments on Electromagnetic Micromirror Array with Bulk Silicon Mirror Plate and Aluminum Spring - C. Ji and Y. Kim, Seoul Nat. U., Seoul, Korea p. 1320

4A3.06P A Latching, Bistable Optical Fiber Switch Combining LIGA Technology with Micromachined Permanent Magnets - K. Fischer, B. Chaudhuri, S. McNamara, H. Guckel, Y. Gianchandani, and D. Novotny, U. Wisconsin, Madison, WI, USA p. 1340

4A3.07P Waveguiding in MEMS Compatible 3-D Silicon Photonic Lattices - J. Fleming and S. Lin, Sandia Nat. Labs, Albuquerque, NM, USA p. 1344

4A3.08P Focal Length Control by Microfabricated Planar Electrodes-based Liquid Lens (µPELL) - S. Kwon and L. Lee, U. California, Berkeley, CA, USA p. 1348

4B3 Analysis of Fluid-Solid Interactions
Thursday, June 14, 2001 (1:30 p.m. - 3:10 p.m.)

4B3.01 Compact Squeezed-Film Damping Model for Perforated Surface - T. Veijola, Helsinki U. Tech., Helsinki, Finland, T. Mattila, VTT, Finland p. 1506

4B3.02 Planar Micro-Fluidic Devices for Controlled Vortex Generation - G. Lettieri, E. Verpoorte, and N. de Rooij, U. Neuchâtel, Neuchâtel, Switzerland p. 1510

4C3 Polymcr MEMS
Thursday, June 14, 2001 (1:30 p.m. - 3:10 p.m.)

4C3.01 Application and Investigation of In-Plane Compliant SU8-Structures for MEMS - V. Seidemann, S. Bütefisch, and S. Büttgenbach, Tech. U. Braunschweig, Braunschweig, Germany p. 1616

4C3.02 Fabrication of Ultrathick Micromolds Using JSR THB-430N Negativ UV Photosist - F. Tseng and C. Yu, Nat. Tsing-Hua U., Hsinchu, Taiwan p. 1620

4C3.03 Fabrication of Complex Micro Channel Systems Inside Optically-Transparent 3D Substrates by Laser Processing - W. Li and J. Qin, Chinese U. Hong Kong, Hong Kong, SAR, T. Mei, Chinese Acad. Sci., Anhui, China p. 1624

4C3.05 Photoplastic Shadow Masks for Rapid Resistless Multi-layer Micropatterning - G. Kim and J. Brugger, U. Twente, Enschede, The Netherlands, B. Kim, U. Tokyo, Tokyo, Japan p. 1632

4C3.08P Derivatization of Fluorinated Polymers and their Potential Use for the Construction of Biosensors - M. Keusgen, J. Glodek, P. Milka, and I. Krest, U. Bonn, Bonn, Germany p. 1644

4D3.01 Sensing Properties to Dilute Chlorine Gas of Indium Oxide Based Thin Film Sensors Prepared by EB Evaporation - J. Tamaki, C. Naruo, Y. Yamamoto, and M. Matsuoka, Ritsumeikan U., Shiga, Japan p. 1718

4D3.02 Diffusion Equation-Based Analysis of Thin Film Semiconductor Gas Sensor - Sensitivity Dependence on Film Thickness and Operating Temperature - G. Sakai, N. Matsunaga, K. Shimanoe, and N. Yamazoe, Kyushu U., Fukuoka, Japan p. 1722

4D3.04 High-Temperature NOx Sensor Based on Stabilized Zirconia and ZnFe₂O₄ Electrode - S. Zhuiykov, M. Muta, N. Yamazoe, and N. Miura, Kyushu U., Fukuoka, Japan, T. Ono, and A. Kunimoto, Riken Corp., Saitama, Japan p. 1730

4D3.06P High H₂ Sensing Performance of Anodically Oxidized TiO₂ Film Contacted with Pd - Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, Nagasaki U., Nagasaki, Japan p. 1738

4D3.15P Detection of Volatile Compounds Correlated to Human Diseases through Breath Analysis with Chemical Sensors -
p. 1774

4D3.16P Micro Membrane Reactor: A flow-through Membrane for Gas Pre-Combustion -
A. Splinter, J. Stürmann, O. Bartels, and W. Benecke, U. Bremen, Bremen, Germany
p. 1778