Springer

Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo
Dietrich O. Hummel

Atlas of Plastics Additives
Analysis by Spectrometric Methods

With 62 tables and 772 FTIR spectra

Springer
Includes bibliographical references and index.
ISBN 3-540-42414-8 (alk. paper)
TP14.2.H86 2002
668.4'11--dc21

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

The use of general descriptive names, registered names trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publisher cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Typesetting: medio Technologies AG, Berlin
Cover design: frido, Barcelona
Printed on acid free paper SPIN: 10841513 2/3020/M - 5 4 3 2 1 0

Library of Congress Cataloging-in-Publication-Data
Hummel, Dieter O.
p.cm.
Includes bibliographical references and index.
ISBN 3540424148 (alk. paper)
TP14.2.H86 2002
668.4'11--dc21
Twenty years ago the 2nd edition of the text and spectra volume of Friedrich Scholl on the analysis of plastics additives was published, it can be found in most laboratories. He deceased shortly after his retirement, and my coworkers and I took over his heritage. Collecting samples of additives of all kind as well as the measurement of their FTIR spectra was done by Sigrun Wittmann, Liu Min, Mark Amberg, Vera Brunne, Astrid Baum and myself; my wife Doris digitised the structures. 752 spectra of the more important additives were selected from a total of 1630. To facilitate access for the analyst, the “triplets” (spectrum with peak table, structure, legend) were arranged according to a decimal system (technological class, chemical composition). Registers (chemical and trade name, empirical formula) help one to find the desired spectrum.

Literature on (predominantly) spectroscopic methods in the analysis of plastics additives was evaluated until 2001. Methods and experiments were critically reported; wherever possible the results were compressed in tables. In order to keep the volume of the book within limits only elementary methods for the separation of additives and matrices were described (2nd chapter). The chromatographic separation of mixtures had to be omitted; it is amply described in the book of Scholl and in later monographs. The reason why chapters 3 and 7 are so large is very simple: (FT)IR and mass spectrometries are by far the most important methods for identification and quantitative determination of additives. They are also suitable for combination with chromatographic and other analytical methods.

I owe gratitude to my coworkers for their zeal as well as to Stiftung Industrieforschung for generous support of our research, to many chemical companies for providing samples and to numerous colleagues sending reprints. Many thanks go to my colleagues B. Schrader (Uni. Essen), K.-W. Brzezinka (BAM, Berlin-Adlershof), K.-J. Eichhorn and D. Fischer (IPF Dresden) for measuring the Raman spectra of problematic samples. Finally, many thanks go to the editorial staff of Springer Verlag and to medio Technologies (producer) for skill and carefulness and for their patience with the author.

Dietrich O. Hummel
Summer 2002
Table of Contents

Part A Theory und Practical Applications 1

1 Introduction 3

2 Extraction, Solution Precipitation and Separation of Additives 5
2.1 Extraction 5
2.2 Solution Precipitation 5
2.3 Separation of Additive Mixtures into Components 7

3 Infrared Spectrometry 9
3.1 Fundamentals 9
3.2 Sample Preparation and Measurement 10
3.3 Conventional and Computer-Supported Interpretation of IR Spectra 12
3.4 Some Aspects of FTIR Spectrometry 13
3.4.1 Storage of Spectra in the Computer 13
3.4.2 The Search for Similarity and Equality (“Identity”) 14
3.5 Recent Work in IR Spectrometry of Additives 17
3.5.1 Additives with Preventive or Curative Properties 17
3.5.1.1 Empirical IR Band Assignments 17
3.5.1.2 Separation of Additives and Identification by (FT)IR Spectrometry 18
3.5.1.3 Solubility of Stabilisers and Antioxidants in Polymers 20
3.5.1.4 ATR Investigation of Rubber Surfaces 21
3.5.1.5 Quantitative IRS Analysis of Additives 21
3.5.2 Pigments and Fillers 22
3.5.2.1 Organic Pigments 22
3.5.2.2 Inorganic Pigments and Fillers 24
3.5.2.3 Pigments and Other Components in Fine Art and Historical Objects 25
3.5.3 Plasticisers 26

4 Raman Spectrometry 55
4.1 Fundamentals 55
4.2 Applications of RS in the Field of Plastics Additives 55
4.3 RS Combined with Information-Enhancing Techniques for the Identification of Dyes and Pigments 61
4.3.1 Subtracted Shifted Resonance RS 61
4.3.2 RS Combined with Light Microscopy 61

5 Spectrometry in the Ultraviolet and Visible Regions 65
5.1 Fundamentals 65
5.2 Antioxidants 65
5.3 Light Stabilisers 67
5.4 Pigments 67
5.5 Plasticisers 68

6 Nuclear Magnetic Resonance Spectrometry 71
6.1 Fundamentals 71
6.2 Applications 71
Part A Theory and Practical Applications

7 Mass Spectrometry 73
 7.1 Fundamentals 73
 7.1.1 Mass Separation 73
 7.1.2 Ionisation 73
 7.1.3 Ion Detection 74
 7.2 Mass Spectrometry with Electron Impact Ionisation (EIMS) 74
 7.3 Mass Spectrometry with Low-Fragmentation Ionisation 76
 7.3.1 (Pyrolysis-) Field Ionisation (FI) and Field Desorption Mass Spectrometry (Py-FIMS, FDMS) 76
 7.3.2 Chemical Ionisation Mass Spectrometry (CIIMS) 80
 7.3.3 Fast-Atom Bombardment Mass Spectrometry (FAB-MS) 82
 7.3.4 Laser-Desorption Mass Spectrometry 83
 7.3.4.1 Matrix-Assisted Laser-Desorption Ionisation Time-of-Flight (MALDI-TOF) Mass Spectrometry 83
 7.3.4.2 Laser-Desorption FT-Ion Cyclotron Resonance (LD/FT-ICR) Mass Spectrometry 84
 7.4 Mass Spectrometry with Pre-Separated Mixtures (GC-, HPLC-, TLC-MS) 87
 7.4.1 On-Line Coupling of GC with Mass Spectrometry (GC-MS) 87
 7.4.2 On-Line Coupling of Separation Techniques for Non-Volatile Substances with Mass Spectrometry 88
 7.4.3 A Typical Investigation 88
 7.5 Mass Spectrometry with a Second Mass Spectrometer as Analyser (MS-MS, Tandem MS) 89
 7.5.1 Fundamentals 89
 7.5.2 MS-MS of Additives 89

8 Structure Analysis by X-Ray Diffraction 111
 8.1 Fundamentals 111
 8.2 Inorganic Pigments and Fillers 111
 8.3 Organic Pigments 111

9 Elemental Analysis 113
 9.1 Atomic Emission Spectroscopy 113
 9.2 Atomic Absorption Spectroscopy 115
 9.3 Analysis of Surfaces: X-Ray Induced Photoelectron Spectroscopy (XPS) 115

10 Bibliography 117
 10.1 Books, Monographs, Reviews 117
 10.2 Contributions in Journals 118
 10.2.1 Additives in General 118
 10.2.2 Antioxidants 120
 10.2.3 Pigments, Fillers 121
 10.2.4 Plasticisers 123
 10.2.5 Stabilising Agents 124
 10.2.6 Rubber Chemicals 124
 10.2.7 Flameproofing and Blowing Agents, Antistatics, Biocides and Other Additives 125
 10.2.8 Computer-Aided Data Evaluation, Special Techniques in Instrumental Analysis 126

11 Subject Index 127

Part B FTIR Spectral Atlas of Plastics Additives 131

1 Decimal Classification of Additives 133

2 User's Guide 143
 FTIR Spectra of Additives 143

3 Chemical Name Index 521

4 Trivial / Trade Names 531
 4.1 Pigment CIE Name Index 535