Solving the Dynamic Complexity Dilemma
Solving the Dynamic Complexity Dilemma

Predictive and Prescriptive Business Management: Answering the Need for a New Paradigm
This book is dedicated to the inspirational science of two: Henri Poincare and Jean Kovalevsky. As fathers of modern Perturbation, they along with my own father—who taught me curiosity and perseverance—have been a source of great motivation. And to new generations who will hopefully follow in my fathers’ footsteps by dedicating themselves to the March and Quest for the betterment of humankind…

–Nabil Abu el Ata

This book is dedicated to the memory of my late wife Cynthia and to my wife Penny.

–Maurice J. Perks
Increasing complexity is a phenomenon experienced by nearly everyone, but certainly by anyone who works in one of the tech-oriented industries. Yet for the latter, it has always been accepted as something of an unavoidable fact of life. After all, if a problem is complicated to begin with, it is usually impossible to create a simple solution for it. And the tools, methods, and processes we use to solve the complex problem bear significant intrinsic complexity themselves. So, we cannot reasonably expect to stay in a realm of limited, manageable complexity levels while we keep piling layer upon layer upon layer of building blocks of hard- and software, processes, restrictions, (inter-)dependencies, and rules in our quest to find solutions to business problems. Such is the mind of the systems engineer, and usually the manager, that increasing complexity is not seen as impending doom, but rather as unavoidable or even as a sign of something powerful and awe-inspiring.

That, in itself, is a bad thing. What’s much worse is that our society is running into a very bad cross of trends to do with complexity, and that we haven’t found any way to tackle complexity itself. Let me explain the crossing trends first:

For some time now, we have been stretching the limits of the complexity we are able to cope with. The human brain is not made to handle more than seven or, in some exceptional cases, eight dependencies (complications, variables, dimensions, categories…) at the same time. There simply aren’t enough neurons cross-connected in the part of the brain that handles explicit, conscious thinking. So from that point on, if complexity increases further, a cluster of several items must be used as a proxy for the items it contains. But it is often impossible to do so without omitting actual complexity. Some of the items inside the cluster may have serious limitations in their implementations, and if we disregard these, the solution built on top of this will eventually, and quite bluntly, fail. Others will have dependencies to items in other clusters, and by referencing the clusters instead of the actual items, we are effectively ignoring these dependencies.

So, year over year, by attacking more complicated problems and using more complex building blocks to solve them (operating systems, databases, application servers enterprise buses, third-party libraries, development, and version control
software, load balancers, web servers, higher level web programming standards and many, many more) we have been using clusters of exceeding complexity as simplified proxies for a desired functionality, yet we have ignored the fact that they are actually highly interdependent. In effect, solutions built like this tend to be flaky and hard to debug once they fail.

This trend has been going up in parallel to, and essentially powered by, the well-known Moore’s Law.

The other trend, the one which is running against the one above, is attention span. It is no longer usual for even a person with a scientific degree to actually read an essay about a (complex) topic that is a dozen or more pages long. The term “tl;dr,” a meme that has become a ubiquitous Internet meme, stands for “too long; didn’t read” and is a humorous way to say “sorry, my attention span is too short, could you please say it in five words and a smiley?” Attention spans are becoming shorter as more and more communication shifts to instant, low-latency short messages that require immediate attention, and as the amount of communication increases overall. Being interrupted by your smart device that someone retweeted something you wrote, while catching up on all those emails from work that you got in cc: and then getting an instant message from your spouse asking you to get some groceries on the way home has become a common situation, but it is detrimental to doing the concentrated work required to cope with today’s increasingly complex tasks.

The average length of a scene cut has decreased from 30 min in live theater of a 100 years ago, to 30 s in early films, to 2 s in a 2000s action movie, too often less than a second in contemporary screenplay. And this is definitely having an impact on our central nervous system, our brains get used to being taken away from one context to another and not having to worry about a single topic for long.

But the most disturbing thing is that we have been unable to even try to attack complexity itself in the way we usually attack all the other problems: by identifying their nature, analyzing them, dividing them into smaller parts, and eventually finding the right formulas to solve the constituents of the problem.

This is what this book is about.

The first step, which is presented in this book, is to identify that there are actually two kinds of complexities: static complexity is the one that we all know about, that we can see, identify, plot on a graph, type in a table on a two-dimensional sheet of paper. But that is not what typically causes problems. The reason for trouble is usually more subtle: minute changes to systems, minor updates, little variations to a business process, edge conditions that change, all of those (and a lot more) cause what Dr. Abu el Ata identified as “Dynamic Complexity.” And fortunately, he offers a way to handle it, to at least constrain its often catastrophic impact, make what he calls “singularities” predictable and thus,
avoidable. Using a branch of mathematics called “perturbation theory” and a theory of “causal deconstruction” on both of which he based his own set of tools, “X-Act,” he can simulate both static and dynamic complexity of any system and precalculates singularities in order to make them avoidable. The principles and tool set has been applied to problems in business, finance, logistics, science, and engineering, and are actually applicable to anything that can be transformed into a mathematical model.

This book aims to introduce the reader to the first promising approach at attacking complexity’s very nature, at understanding complexity itself, so that it can be split into smaller parts which can be individually tackled. Starting with this approach, we may still be able to avoid the ultimate crash when the spread between attention spans on the one hand, and problem and solution complexity on the other hand, becomes too big.

Be prepared for an interesting introduction into a new science: the science of disassembling complexity itself, and making it manageable by precise mathematics. I am sure it will enlighten you, but it will require one thing for sure: a really long attention span. Let’s hope you can make it.

Volker Herminghaus

Volker Herminghaus is one of the most experienced IT professionals in Germany. Without losing sight of the business implications that are derived from the systemic modernization of Information Technology, his experience shows both the potential and actual limits that result from the wild application of hypes and rhetorics. Herminghaus is a champion and early advocate of the business benefits that result from understanding the role dynamic complexity plays in altering system efficiency and effectiveness. He provided both the inspiration and guidance necessary for this book to become a reality.
It is said that necessity is the mother of all inventions, but often a series of breakthrough scientific discoveries come long before the invention itself. Even business-changing inventions like the steam engine, telecommunications, and the electronic computer were made possible by scientific advances made by other inventors years, decades, or even centuries before. Businesses will always look for new ways to operate faster, smarter, and leaner. Industries are reshaped by inventions borne from a vision of how new scientific discoveries can be applied to better meet the performance goals of businesses.

In the late 1970s, it would be difficult to imagine that the mathematical discoveries made by Dr. Nabil Abu el Ata to define orbits for space exploration would one day solve one of the biggest risk management challenges of modern businesses—the prediction of future unknowns. By solving a problem that was previously defined as unsolvable, Dr. Abu el Ata unknowingly set the foundation for a new era of risk management, termed Optimal Business Control (OBC), which enables companies to more accurately predict the future and take strategic actions to improve business outcomes.

It took time to fully understand how the hidden effects—caused by the dynamic complexity—which made the prediction of satellite orbits difficult, also created challenges in the predictable management of a business. And still longer to prove that the same theories and mathematics that Dr. Abu el Ata applied to predict unknowns for safe space exploration could also be applied to business systems in ways that would redefine how businesses expose and control unforeseen outcomes.

Businesses continuously strive to control the impact of unforeseen events or maximize the realization of opportunities. To do so, a business must have the ability to predict risks and control operations in ways to optimize outcomes. Experience and intuition have long been relied upon for prediction but more recently businesses have begun to formalize how they minimize, monitor, and control the effect of uncertainty on objectives using new risk management methodologies supported by probability and statistical analysis—either in the form of spreadsheets or packaged predictive analytics software. Despite these advances,
businesses are increasingly impacted by new and dangerous patterns of behavior, while the time to act to avoid undesirable business outcomes is shrinking.

During his career at IBM and beyond, working as both an engineer and a business consultant, Dr. Maurice Perks has witnessed firsthand the widening gap between businesses’ efforts to build and maintain predictable systems and the chaotic reality whereby unknown influences frequently cause a major deviation from anticipated performance levels. As the interactions and interdependencies between business systems have grown by at least one order of magnitude, so too have the challenges of controlling operations to optimize outcomes. The most popular methods of prediction compare current data to historical references and therefore cannot predict unknowns, which are the very root of the modern day risk management problem. Simply put; if you haven’t seen a pattern in the past and all that you extrapolate is the past you will not see a new pattern in the future until it occurs.

To achieve better predictability, businesses must be able to expose new, dangerous patterns of behavior in time to take corrective actions and know which actions will yield the optimal results. The scientific discoveries of Dr. Abu el Ata have led to technological innovations that combine data collection, analytics, machine learning, and automation processes to help businesses proactively expose and control dynamic complexity risks.

The methodologies and inventions presented in this book by Dr. Abu el Ata and Dr. Perks are now in the early stages of adoption with over 350 businesses worldwide and the results have been very positive. Businesses use these technologies to evaluate new business models, identify the root cause of performance problems, re-architect systems to meet business growth objectives, identify opportunities for millions of dollars of cost savings, and more. These methodologies and technologies are industry and domain agnostic and therefore limited only by our imagination and how businesses choose to use them.

The purpose of this book is to promote a better understanding of how dynamic complexity creates risk in the execution of business plans and to introduce improved ways for management to predict, evaluate, and when necessary, respond to mitigate risks that hinder the realization of performance goals. This book is intended for anyone who wants to explore new and better ways of predicting the future behavior of commercial systems, i.e., a global financial system, or natural patterns, like weather, and managing these systems with better certainty.

Business, information and technology executives, as well as government leaders can use this book to understand how other organizations are using the principles of OBC along with the underlying mathematics and technologies to determine what risks lie ahead and when sudden shocks may occur. Mathematicians and academia can use this book to understand how a dynamic complexity problem can be accurately solved with the right level of representation and a good level of certainty on the reproducibility by using the combination of Causal Deconstruction Theory and Perturbation Theory.

This book is a starting point. The true impacts of the discoveries presented may not be known for years or decades to come. Like all business-changing inventions,
this is an evolutionary process. While much has been achieved, there is still work to be done by the authors and other inventors. The full value of these efforts won’t be realized until the technologies and methodologies become engrained in the culture of the business. When every business, information and technology manager can predict the future with increasing accuracy and confidence and then take strategic action to improve this predicted future, competitive advantage will be won. An ability to understand and control dynamic complexity is the first step toward this goal.

We are such stuff as dreams are made on …
The Tempest …
W. Shakespeare

A few Words from Co-author Nabil Abu el Ata

This book would not exist without the perseverance of my co-author and dear friend Maurice Perks. I am grateful for our journey together. In writing a book, we assume a social and public responsibility that differs from delivering a scientific contribution or applying for a degree, which are individual acts. A book is an act of creation—with lots of gestation and revelations, but also at times risk adversity. In the end we must succumb to the simple fact of life: nothing will be perfect. There will always be some important task left undone or thought not communicated. But a starting point is needed. And it is our hope that this book sufficiently satisfies that goal.

Mathematicians are always looking for structures (even when none exist) and physicists are always looking for a phenomenon (even if they must wait a very long time for one to appear). The best results are always achieved when the two professions collectively direct their efforts through a solid engineering and rigorous discipline. We are fortunate to have the collaboration of many great colleagues—including Rudolf Schmandt, Eric Petitjean, Volker Herminghaus, and Bruno Fennebresque—who represent the right expertise and experience to help us navigate the challenges of building a new management science. Our partners Muriel Barneoud, Alain Roset, Sean Daly provided support and encouragement; to all we are indebted.

This book reflects the wisdom of these individuals. Rudi was instrumental in helping me scope and define the new management science of Optimal Business Control as well as the Prescriptive Management of Risk. Volker, Eric, and Bruno are the champions of cost and efficiency optimization—always challenging us to better meet the needs of business. Maurice brings a wealth of IT experience and faithfully pushes the bounds of my thinking. Together we share a common objective to deliver a scientific platform that will enable businesses to proactively solve dynamic complexity problems. We live in a time when this solution is
greatly needed—as the negative impacts of dynamic complexity grow and the window of opportunity to act shortens.

A book that explains the business impacts of dynamic complexity and presents a practical solution is probably long overdue. For the last decade we have seen the compounding effects of dynamic complexity become an increasingly significant and counterproductive force within businesses. Yet the ideas for this book probably could not have been realized earlier in our lives as practitioners or in my evolution as a solution provider. To document and contribute meaningfully to the science of business management, one must have many opportunities to work on problems, which are endemic to business, and have access to a lot of people who are willing to share their experiences and results they have achieved using the proposed technologies and methodologies. Happily, our clients, partners, and joint collaborators have willingly supported our work and accompanied us in our achievements, which have brought us to this point.

Much of the work presented in this book was supported by real cases, which used the technology advances made possible by my dedicated team at Accretive Technologies. I appreciate their commitment to our cause. We have made significant progress over the last decade—from being the first to identify the negative impact of dynamic complexity on systemic business evolution to the present-day offering of commercial products and services that businesses use to diagnose and remediate dynamic complexity risks.

I owe particular thanks to my board, Charlie Fote, Merritt Lutz, and Charlie O’Rourke, for their continuous encouragement and support, and to my executive team, Annie Drucbert, Tomy Abu el Ata, Stephen Wells, Régine Bouladou, and Michael Brookbanks, for their faithful execution. In addition, I value the ingenuity of my development team—for without them a technology solution to dynamic complexity would not be possible. I look forward to continuing our fight against dynamic complexity together.

While on the subject of the Accretive team, we are indebted to the contribution of Valerie Driessen. She kept us on track, imposed rigor and discipline of usefulness, and controlled the trajectory of the book until we landed smoothly. To her we owe the deepest of gratitude.

My sincere thanks are owed to our publisher, Springer. We have benefitted from their advice and continuous encouragements to persevere against the obstacles of life. Closer to home, we have each enjoyed the love, support, and time our families have provided us. Thanks for putting up with us as we worked through nights and weekends to deliver this book.

Even Fewer Words from Co-author Maurice J. Perks

Working with Nabil is always Dynamic. He changes the place where he is with great regularity that is unpredictable even with what we have developed. He epitomizes Change. His ideas are never Static. They are always Complex. On a
scale of 1–10 they are 10 plus. My ideas are always Simple. On the same scale they are 1 minus. This makes us the ideal paring with respect to developing ideas and opinions. We thrive off each other’s extremities. We have been doing this for many years and it’s both great fun and greatly rewarding. Nabil inspires. I reason. That’s our team. In the best traditions of British friendship and respect, we are mates.

Personally, I would like to thank two large groups for the ‘education’ and experiences that have allowed me to contribute to this book. They are:

First, the technical community of IBM: nowhere on this planet is there a treasure-store of IT technical talent like there is within IBM. Talent that runs from the Fellows ‘on high’ downwards to those who are inspired to scale the technical ladder from the bottom rung. This amalgam has unmatched experience of the state of the IT science and what is possible. And, what might be possible to achieve. Someone, somewhere within the greater IBM always knows the answer. Finding that someone can be a challenge though, and hearing that someone’s insight can also be a problem. You can argue against my praise of this technical community in terms of success but this community has set the direction for computing with System/360, the IBM PC, operating systems, relational databases, and a score of supporting components of hardware and software (especially middleware) technologies.

Second, the ever-changing world of customers and their businesses has inspired me on countless occasions. If you want to create something entirely new within the IT world you may not find the seeds in a customer’s environment. But if you want to understand the next steps in the evolution of IT you will find the pointers within many customer environments. The challenges like: cost reduction and efficiency, 24 × 7, security, customer service, and perhaps most of all, a sense of progress and achievement. Customer environments are for me the laboratories of IT.
Contents

Part I The Business Challenge of Dynamic Complexity

1 **The Growing Business Problem of Dynamic Complexity**
 A Simple Analogy of a Hill Walker Explains the Hidden Effects Dynamic Complexity
 An Example of How Interactions in an IT System Cause Dynamic Complexity
 Is Dynamic Complexity a Modern Problem?
 Process, Methods and Mathematics
 Definition of Terms
 Dynamic Complexity and Its Effects
 Dynamic Complexity Analysis: The Foundational Mathematics
 Dynamic Complexity Solution: Optimal Business Control
 Conclusion

2 **The Hidden Time Bomb Known as Dynamic Complexity**
 Introduction
 Understanding the Ticking Time Bomb (a.k.a. Dynamic Complexity)
 Expected Versus Experienced Efficiency-of-Scale
 Failing to Identify Hidden Causes of Performance Loss
 Conclusion

3 **The Challenge of Expecting the Unexpected**
 Introduction
 Framing the Unexpected Challenge
 The Challenge of Past-Present-Future
 A Paradigm Shift: The Future Oriented Enterprise
 Implementing a Broader Future-Oriented Planning Perspective
 Managing the Multiplier Effect of Dynamic Complexity
 Meeting the Challenge
4 Dynamic Complexity in Action ... 29
 Introduction ... 29
 Setting the Scene .. 30
 Probability and Uncertainty ... 31
 The Speed at Which the Unexpected Happens 32
 Insight ... 33
 Conclusion ... 34

5 Hide and Seek .. 37
 Introduction to Hidden Effects ... 37
 The Law of Unintended Consequences 37
 Capt. Ed Murphy’s (1918–1990) Pronouncement 39
 Adam Smith Told us Something Relevant a Long Time Ago 39
 Not Every Law is a Physical Law: Good or Bad? 40
 Conclusion ... 40

6 Predicting the Unexpected .. 43
 Introduction ... 43
 Examining the Pitfalls of Probability 43
 Moving Towards Better Predictability 45
 How Can We Predict What Has Never Been Seen? 45
 Conclusion ... 46

7 Gaining Perspective on Complexity 49
 Setting the Scene About Complexity 49
 How Can We Define Complexity? 49
 Who Sees Complexity? ... 50
 How to Assess Perceived Complexity? 52
 The Perceived Static View is not Enough 52
 Changing Complexity ... 53
 Conclusion ... 54

8 The Wool, the Eyes and the Pulling-Over 55
 The Business Relationship of Complexity and Technology 55
 The Status Quo ... 56
 Consider a Plane Solution .. 57
 Consider a Retail Outlet Solution 57
 Back to Financial Markets: Consider a Parrot 59
 What About the Future? .. 60
 Conclusion ... 61
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>An Engineering and Re-engineering View</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Introduction: Scene Setting About Engineering</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>What’s ‘Good Engineering’?</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Change, Dynamics and Design</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Transparency</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Two Forms of Analysis</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Benchmarking and Dynamic Complexity</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Why Technology Still Matters</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td>How Dynamic Complexity Drags a Business Down</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Example: The Creeping of Dynamic Complexity Drag</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Contain Risks Using Advanced Modeling to Reveal Unknowns</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Example: A Telco Prepares for Market Expansion</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>79</td>
</tr>
<tr>
<td>Part II</td>
<td>Dynamic Complexity Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the Foundation for the Solution</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>How Do We Spot the Un-spottable?</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Introduction to Patterns, Dynamic Patterns</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>and Compound Patterns</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>The Origin of Patterns</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>How Might We Use Patterns?</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>How We Might Understand Patterns?</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Dynamic Patterns: Emulative Deconstruction</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>How Perturbation Theory Helps Us</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Computation Uses Dynamic Signature Characteristics</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Practical Use of Dynamic Patterns in Predicting Future Architecture</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Insight</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>Predictive Modeling</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Mechanisms to Help Solve the Problem</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Perturbed Service Process: Analytical Solution</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Small Divisors and Their Effects Can Cause Chaos</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>System Dynamics Theories</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Small Divisor Problems in Partial Differential Equations (PDE’s): The Perturbed Solution</td>
<td>100</td>
</tr>
</tbody>
</table>
13 A Theory of Causal Deconstruction

Introduction ... 103
A Complex System Under Optimal Control 103
Hierarchic Perturbation Model 105
The New Method: Causal Deconstruction Method 110
 Stage 1: Establish Base Dynamics 111
 Stage 2: Deconstruct Complexity 112
 Stage 3: Construct Emulator 114
 Stage 4: Predict Singularities 116
 Stage 5: Compare to Actual 118
 Stage 6: Define Improvement 120
 Stage 7: Monitor Execution 121
Example 1: Causal Deconstruction of a Complex IT System 122
Example 2: Causal Deconstruction of a Complex System 123
Example 3: High Technology Production Line Factory 125
Conclusion ... 125

14 Causal Deconstruction: The Beautiful Problem Provides
the Smart Solution ... 127
Introduction ... 127
The Early Days ... 127
Deeper into the Solution 128
Examples of Dynamic Complexity
(View from the Causal Deconstruction) 132
The Importance of Hierarchic Predictive Emulation
within Causal Deconstruction Theory 136
Mathematical Predictive Emulation of Dynamic Complexity 139
 Step 1: Define and Collect Information 139
 Step 2: Deconstruct and Prepare the Input
to the Mathematical Emulation 140
 Step 3: Emulate the System and Its Dynamic Complexity .. 140
 Step 4: Use the Mathematical Predictive Analytics
to Diagnose, Discover Limit and Identify Remediation 141
Conclusion ... 141

15 A Mathematical Treatise of Dynamic Complexity 143
Introduction ... 143
The Origin of Perturbation Theory 143
Solving a Problem Using Perturbation Theory 145
Perturbation Orders 145
Why Use Perturbation Theory Versus Numerical
or Statistical Methods? 146
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposing the Unknown Using Mathematics</td>
<td>146</td>
</tr>
<tr>
<td>Mathematical Hierarchy</td>
<td>148</td>
</tr>
<tr>
<td>8-Level Hierarchy</td>
<td>148</td>
</tr>
<tr>
<td>N Level Hierarchy: Postal Services</td>
<td>149</td>
</tr>
<tr>
<td>Perturbation Theory Mathematical Solution</td>
<td>152</td>
</tr>
<tr>
<td>The Envelop or the Exact Solution</td>
<td>152</td>
</tr>
<tr>
<td>The Mathematical Solution (Patents in Reference)</td>
<td>152</td>
</tr>
<tr>
<td>Lower-Level Mathematical Emulation Examples</td>
<td>155</td>
</tr>
<tr>
<td>Example 1 Space-Time: The Case of Relational Data</td>
<td>155</td>
</tr>
<tr>
<td>Example 2: Human Service (Direct and Indirect Perturbation)</td>
<td>160</td>
</tr>
<tr>
<td>Example 3 Space-Time: Postal Sorting Machine or Robot</td>
<td>161</td>
</tr>
<tr>
<td>Example 4: Economic Instruments</td>
<td>161</td>
</tr>
<tr>
<td>The Mathematical Method</td>
<td>163</td>
</tr>
<tr>
<td>Validation and Calibration (As the World is not Perfect)</td>
<td>163</td>
</tr>
<tr>
<td>16 Emulative Deconstruction for Mathematical Prediction</td>
<td>165</td>
</tr>
<tr>
<td>Introduction</td>
<td>165</td>
</tr>
<tr>
<td>Definition of Emulative Deconstruction Theory</td>
<td>166</td>
</tr>
<tr>
<td>Why Is Emulative Deconstruction Necessary?</td>
<td>167</td>
</tr>
<tr>
<td>Understanding Corporate Performance: Influencers and Impacting Factors</td>
<td>167</td>
</tr>
<tr>
<td>Examples of Corporate Performance Influencers</td>
<td>168</td>
</tr>
<tr>
<td>Extended Predictive Space</td>
<td>168</td>
</tr>
<tr>
<td>Common Predictive Platform for Existing and Future Enterprise</td>
<td>168</td>
</tr>
<tr>
<td>Dynamic Maneuverability Metric</td>
<td>170</td>
</tr>
<tr>
<td>17 Singularity and Chaos Theory.</td>
<td>175</td>
</tr>
<tr>
<td>Introduction</td>
<td>175</td>
</tr>
<tr>
<td>Why Singularity and Chaos Point Is Important to Discover and Predict</td>
<td>175</td>
</tr>
<tr>
<td>The Chaos Theory</td>
<td>176</td>
</tr>
<tr>
<td>The Singularity Theory</td>
<td>178</td>
</tr>
<tr>
<td>Single Singularity</td>
<td>178</td>
</tr>
<tr>
<td>Multiple Singularities: Singularity Resurgence</td>
<td>180</td>
</tr>
<tr>
<td>Areas Covered by Mathematical Predictive Analytics</td>
<td>180</td>
</tr>
<tr>
<td>Conclusion</td>
<td>182</td>
</tr>
</tbody>
</table>
Part III The Application of Optimal Business Control

18 Improving Business Outcomes with Optimal Business Control 185
 Introduction ... 185
 The Applicability of OBC .. 185
 Examples of Business Processes .. 186
 Examples of National Processes .. 186
 Examples of International/Global Processes 186
 The Definition of OBC ... 187
 Translation of Performance Goals into Computerized Formats ... 187
 Consolidation of Historic Patterns and Predicted Metric Information .. 188
 Operational Performance Analysis and Identification of Correctional Actions ... 189
 Interventions Made by Management in Light of the Predictive Information Reported .. 190
 The Theory of Optimal Business Control (OBC): Process Control, Optimal Control .. 190
 Risk Daunting Managers .. 191
 The Vital Solution .. 193
 Optimal Business Control Theory .. 194
 How It Works .. 195
 Optimal Business Control Is a Global Framework 197
 Example of Corporate Revival .. 197
 Conclusion .. 201

19 The Role of Business Architecture: A Case Study 203
 Introduction ... 203
 Architecture Determination .. 203
 A Case Study: Using Model-Based Architecture Methodology and X-Act Predictive Tooling to Transform Architecture 204
 Target Architecture Development and Modeling Approach 204
 Summary of Approach ... 205
 Target Architecture: Guideline Principles 206
 To Gain Fluidity, Scalability and Predictability 206
 The Target Architecture Characteristics 207
 Conclusion .. 208

20 Strategic Transformation of Industries: Predictive Management of Postal Services Case Study 209
 Introduction ... 209
 A Case Study ... 209
 Static Versus Dynamic Complexity in Postal Services 210
Using Predictive Analytics to Mature IT Production

Introduction .. 221
Perspective .. 221
What’s Wrong with Current IT Production Practices? 222
Testing Is a Burden .. 223
Difficult Budget, Time and Quality Trade-Offs 223
Unpredictable Results 223
How ‘Dynamic Complexity’ Threatens IT Production Goals 224
Too Many Variants 224
Risk Exist in Gaps Between Domains 224
Common IT Testing Challenges and Solutions 225
Reinventing IT Production with Predictive Analytics 226
Use Predictive Analytics in All SDLC Stages 227
Become Future-Oriented 228
Understand NFRs .. 228
Monitor NFRs as They Evolve 229
Use OBC to Support Strategic SDLC 229
Expand Testing Capabilities 229
Adopt a Holistic Approach 230
Achieve 100 % Testing Coverage 230
Map Business Requirements to Technical Specifications 231
Diagnose and Improve 232
Getting Started with Predictive Model-Based Testing 232
Establishing a Test Factory to Advance System 232
What Problems Does a Test Factory Solve? 233
Test Factory Benefits 234
Conclusion .. 235

Prescriptive Production: A Case Study

Introduction .. 237
Background .. 237
How ‘Dynamic Complexity’ Threatens Production Goals 238
Dynamic Complexity Causes Performance Loss 238
Instinctive Decision-Making Is No Longer Sufficient 238
Overcoming Production Management Challenge 239
Predictive Analytics Provide Insights into the Future 239
Pairing Human + Machine 240
Reinventing Production Management 240
How Prescriptive Production Works 241
Maximize ROI with an Analytics Center of Excellence 242
Getting Started with a Phased Approach 243
Conclusion 244

23 The Economic Environment: A Prospective Case 247
Introduction 247
The Components and Characteristics of a Broader Solution 247
Is the Next Economic Bubble Showing Its Early Shoots? 249
Conclusions 251

Epilog: Defining the Way Forward 253

Appendix: Exploring the Pitfalls of Traditional Risk Analysis in Financial Industries 261

Key Concepts 267
Glossary 269
Bibliography 273
Index 279
About the Authors

Nabil Abu el Ata As Accretive’s founder and CEO, Dr. Abu el Ata has invested over 20 years in perfecting the science behind the company’s solution offering with over 15 patents. He offers a breadth of analytical skills, risk management, and business intelligence expertise, as well as IT and business process management knowledge. To say Dr. Abu el Ata has a passion for mathematics, science, and technology, and more specifically modeling of dynamic complexity for corporate systems would be an understatement. Having published two books, 15 scientific papers, and over 300 technical and management reports, he has a proven ability to absorb, process, and add insight on a wide variety of technological subjects. Dr. Abu el Ata’s accomplishments include doctorate (Ph.D. and D.Sc. from Paris-Sorbonne) and bachelor’s degrees in Mathematics and a master’s degree in Physical Sciences (Royal Observatory, Cambridge University). He is a valued former Doctorate Fellow of the European Space Organization; former Data Processing Director and Advisor for the French Atomic Energy Authority; and former CTO of First Data. Dr. Abu el Ata is also an advisory board member of the European Strategic Program for Research in IT; a Steering Committee member for European Programs: Pyramid, Europicon and Itaqua; a advisory board member of French Employment Organization, French Ministry of Finance, French Postal Services, one of France’s largest banks (Credit Agricole) and Auchan Retail; an External Professor for a number of universities in France, the UK, and the US; and Laureate of Computer World Honors 2008.

Maurice J. Perks is a Doctor of Science and a visiting professor of IT Integration at the University of York. During his tenure as an IBM employee (1968–2010) he attained the level of IBM Fellow. He has spent 40 years working on the challenges of large and complex systems at deep development levels within the IBM Corporation and directly with many of the world’s largest enterprises. At first the systems that he has worked on were called computer systems, then data processing systems, and now IT systems. Many of these systems have been in the business world of finance. He has seen the technology components of these systems increase in power and capability by an order of countless levels. He has seen these systems
evolve from isolated batch processes into the global connectivity of the Internet and highly coupled systems. He has seen the complexity of systems increase by what feels to be many orders of magnitude. Throughout his career he has constantly sought to find a mathematical way of representing complexity. He has not succeeded because at heart, he is an engineer as opposed to a scientist. He passionately believes in what he calls *proper engineering*. He has homes in Dorset, UK, and Nice, France.