

Stochastic Models for Spike Trains of Single Neurons
These notes are aimed at collecting in one volume the vast and scattered literature on stochastic models of spontaneous activity in single neurons. An attempt has been made to make the treatment self-contained by providing an introduction to neurophysiology as well as the mathematical background for each kind of model. The mathematical aspects of a model are stated as a series of lemmas and theorems; this gives the relative importance of the different results and also facilitates easy reference. However, the proofs are often sketchy and sometimes omitted. This has been done to make the notes compact and easier to read. While the coverage is fairly wide, not all studies in the literature are described herein, mainly because the differences are slight. This, however, should not be construed as an understatement of the relative importance of some of them; they have been included in a list of additional references. This list also includes studies in fields like operations research, inventory control and reliability theory. These have possible applications in neuron modelling though no direct reference is made to them in the notes.

Many of the figures have been adapted from various publications and permission from the following publishers is gratefully acknowledged: M/s Springer-Verlag, Academic Press, Macmillan Journals Ltd., Applied Probability Ltd., Wiley-Interscience, McGraw-Hill, Cambridge University Press, Society for Mathematical Biology, American Elsevier and American Association for the Advancement of Science.

It is a pleasure to thank Mr. A.V. Chandrasekaran for the care he has taken in typing these notes.

Madras
31.1.1977
S.K. Srinivasan

G. Sampath
CONTENTS

Introduction 1

1 Some basic neurophysiology 4
 1.1 The neuron 4
 1.1.1 The axon 7
 1.1.2 The synapse 9
 1.1.3 The soma 12
 1.1.4 The dendrites 13
 1.2 Types of neurons 13

2 Signals in the nervous system 14
 2.1 Action potentials as point events - point processes in the nervous system 15
 2.2 Spontaneous activity in neurons 18

3 Stochastic modelling of single neuron spike trains 19
 3.1 Characteristics of a neuron spike train 19
 3.2 The mathematical neuron 23

4 Superposition models 26
 4.1 Superposition of renewal processes 26
 4.2 Superposition of stationary point processes - limiting behaviour 34
 4.2.1 Palm functions 35
 4.2.2 Asymptotic behaviour of n stationary point processes superposed 36
 4.3 Superposition models of neuron spike trains 37
 4.3.1 Model 4.1 39
 4.3.2 Model 4.2 - A superposition model with two input channels 40
 4.3.3 Model 4.3 40
 4.4 Discussion 41

5 Deletion models 43
 5.1 Deletion models with independent interaction of excitatory and inhibitory sequences 44
5.1.1 Model 5.1 The basic deletion model 45
5.1.2 Higher-order properties of the sequence of r-events 55
5.1.3 Extended version of Model 5.1 - Model 5.2 60
5.2 Models with dependent interaction of excitatory and inhibitory sequences - Models 5.3 and 5.4 61
5.3 Discussion 65

6 Diffusion models 67
6.1 The diffusion equation 68
6.1.1 The diffusion process as the limit of a random walk 68
6.1.2 General theory of diffusion processes 73
6.2 Diffusion models for neuron firing sequences 75
6.2.1 Model 6.1 77
6.2.2 Model 6.2 - Refractoriness in a diffusion model 83
6.3 Discussion 88

7 Counter models 89
7.1 Theory of counters 89
7.2 Counter model extensions of deletion models with independent interaction of e-and i-events 94
7.2.1 Model 7.1 95
7.2.2 Model 7.2 95
7.2.3 Model 7.3 97
7.3 Counter model extensions of deletion models with dependent interaction of e-and i-events 98
7.3.1 Model 7.4 98
7.3.2 Model 7.5 99
7.4 Counter models with threshold behaviour 100
7.4.1 Model 7.6 100
7.5 Discussion 101

8 Discrete state models 102
8.1 Birth and death processes 102
8.2 Models with excitatory inputs only 108
8.2.1 Model 8.1 110
8.2.2 Model 8.2 112
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3 Models with independent interaction of e-events and i-events</td>
<td>115</td>
</tr>
<tr>
<td>8.3.1 Model 8.3</td>
<td>116</td>
</tr>
<tr>
<td>8.3.2 Model 8.4</td>
<td>122</td>
</tr>
<tr>
<td>8.3.3 Model 8.5</td>
<td>127</td>
</tr>
<tr>
<td>8.4 Models with dependent interaction of input sequences</td>
<td>130</td>
</tr>
<tr>
<td>8.4.1 Model 8.6</td>
<td>131</td>
</tr>
<tr>
<td>8.5 Discussion</td>
<td>133</td>
</tr>
<tr>
<td>9 Continuous state models</td>
<td>135</td>
</tr>
<tr>
<td>9.1 Cumulative processes</td>
<td>135</td>
</tr>
<tr>
<td>9.1.1 The distribution of $X(t)$</td>
<td>136</td>
</tr>
<tr>
<td>9.1.2 The first passage time problem in a cumulative process</td>
<td>138</td>
</tr>
<tr>
<td>9.2 Models with only one input sequence</td>
<td>141</td>
</tr>
<tr>
<td>9.2.1 Model 9.1</td>
<td>141</td>
</tr>
<tr>
<td>9.2.2 Model 9.2</td>
<td>142</td>
</tr>
<tr>
<td>9.3 Models with independent interaction of e- and i-events</td>
<td>151</td>
</tr>
<tr>
<td>9.3.1 Model 9.3</td>
<td>152</td>
</tr>
<tr>
<td>9.3.2 Model 9.4</td>
<td>158</td>
</tr>
<tr>
<td>9.4 Models with dependent interaction of e- and i-events</td>
<td>166</td>
</tr>
<tr>
<td>9.4.1 Model 9.5</td>
<td>167</td>
</tr>
<tr>
<td>9.5 Discussion</td>
<td>168</td>
</tr>
<tr>
<td>10 Real neurons and mathematical models</td>
<td>169</td>
</tr>
<tr>
<td>10.1 Decay of the membrane potential</td>
<td>170</td>
</tr>
<tr>
<td>10.2 Hyperpolarisation of the membrane</td>
<td>171</td>
</tr>
<tr>
<td>10.3 Refractoriness and threshold</td>
<td>172</td>
</tr>
<tr>
<td>10.4 Spatial summation</td>
<td>173</td>
</tr>
<tr>
<td>10.5 Other properties of neurons</td>
<td>173</td>
</tr>
<tr>
<td>10.6 The neuron as a black box</td>
<td>175</td>
</tr>
<tr>
<td>10.7 Spike trains and renewal processes</td>
<td>176</td>
</tr>
<tr>
<td>10.8 Conclusion</td>
<td>177</td>
</tr>
</tbody>
</table>

References: 178

Index: 186