Lecture Notes in Computer Science 8107

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
 Lancaster University, UK
Takeo Kanade
 Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
 University of Surrey, Guildford, UK
Jon M. Kleinberg
 Cornell University, Ithaca, NY, USA
Alfred Kobsa
 University of California, Irvine, CA, USA
Friedemann Mattern
 ETH Zurich, Switzerland
John C. Mitchell
 Stanford University, CA, USA
Moni Naor
 Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz
 University of Bern, Switzerland
C. Pandu Rangan
 Indian Institute of Technology, Madras, India
Bernhard Steffen
 TU Dortmund University, Germany
Madhu Sudan
 Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos
 University of California, Los Angeles, CA, USA
Doug Tygar
 University of California, Berkeley, CA, USA
Gerhard Weikum
 Max Planck Institute for Informatics, Saarbruecken, Germany
Welcome to the proceedings of the ACM/IEEE 16th International Conference on Model Driven Engineering Languages and Systems (MODELS 2013). This year’s MODELS edition took place in the “Magic City” of Miami, a renowned region for education and research. As the MODELS community celebrated its 16th birthday, this major hub for culture, entertainment, arts, and fashion offered a unique stage for hosting the international diversity of participants who attended MODELS.

Since its beginnings, the use of models has always been a core principle in computer science. Recently, model-based engineering has gained rapid popularity across various engineering disciplines. The pervasive use of models as the core artifacts of the development process, and model-driven development of complex systems, has been strengthened by a focus on executable models and automatic transformations supporting the generation of more refined models and implementations. Software models have become industrially accepted best practices in many application areas. Domains like automotive systems and avionics, interactive systems, business engineering, games, and Web-based applications commonly apply a tool-supported, model-based, or model-driven approach toward software development. The potential for early validation and verification, coupled with the generation of production code, has been shown to cover a large percentage of implemented functionality with improved productivity and reliability.

This increased success of using models in software and systems engineering also opens up new challenges, requiring collaborative research across multiple disciplines, ranging from offering suitable domain-specific modeling concepts to supporting legacy needs through models. The MODELS conference is devoted to model-based development for software and systems engineering, covering all types of modeling languages, methods, tools, and their applications. MODELS 2013 offered an opportunity for researchers, practitioners, educators, and students to come together, to reflect on and discuss our progress as a community, and to identify the important challenges still to be overcome.

The MODELS community was challenged to demonstrate the maturity and effectiveness of model-based and model-driven engineering, and to explore their limits by investigating new application areas and combinations with other emerging technologies. This challenge resulted in papers submitted to the MODELS 2013 Foundations and Applications Tracks.

The program of MODELS 2013 had a strong mix of research and application papers that demonstrate the advances in this thriving field, anchored by three keynote sessions. Our first keynote speaker was Charles Simonyi from Intentional Software, who talked about “The Magic of Software.” Charles is a well-known high-tech pioneer, philanthropist, and space traveler. He was the chief architect
of Microsoft Word, Excel and other widely-used application programs. He left Microsoft to found Intentional Software, which aims to develop and market computer software for knowledge processing. His passion for science and for space has led him to travel into space twice aboard the Soyuz spacecraft, becoming the fifth space tourist and the first ever to fly twice. Despite this, we found that his opinions are practical and down to earth!

Our second keynote speaker was Constance Heitmeyer, who leads the Software Engineering Section of the Naval Research Laboratory’s (NRL’s) Center for High Assurance Computer Systems. She talked about “Model-Based Development of Software Systems: A Panacea or Academic Poppycock?” Her talk was an interesting view of software modeling from the perspective of transitioning research results to software practice. Among other things, she is the chief designer of NRL’s SCR (Software Cost Reduction) toolset, a set of tools for modeling, validating, and verifying complex software systems, which has been transferred to over 200 industry, government, and university groups.

We were also honored with a keynote presentation by Professor Bernd Brügge, a renowned expert and well-known speaker from the Technische Universität München and Carnegie Mellon University. He discussed a challenging topic in his talk “Creativity vs. Rigor: Informal Modeling Is OK,” showing how it is possible to include informal modeling techniques in project courses with real customers involving a large number of students at the sophomore and even freshmen level, without compromising the ideas of model-driven software development.

The Foundations Track papers provide significant contributions to the core software modeling body of knowledge in the form of new ideas and results that advance the state of the art. Two categories of Foundations Track papers are included in these proceedings: Technical Papers, describing original scientifically rigorous solutions to challenging model-driven development problems, and Exploratory Papers, describing new, non-conventional modeling research positions or approaches that challenge the status quo and describe solutions that are based on new ways of looking at software modeling problems.

The Applications Track papers demonstrate the relevance and effectiveness of the model-based paradigm of engineering. They include two categories of papers: Application Papers, providing a realistic and verifiable picture of the current state of the practice in model-based engineering and explore the problems encountered by the industrial adoption of model-based techniques, and Empirical Evaluation Papers, evaluating existing problem cases or scientifically validated proposed solutions through empirical studies, experiments, case studies, or simulations.

Following the successful format initiated in 2012, we used a Foundations Program Committee and an Applications Program Committee to evaluate all the papers. A separate Program Board (PB) also convened to help ensure that all reviews received by the authors provided constructive feedback, and to check that the selection process was as rigorous and fair as possible. In the 2013 review process each paper was reviewed by at least three members of the Program Committees; the reviews were monitored by a PB member assigned to the paper.
Each paper was extensively discussed at the online Program Committee (PC) meeting, giving due consideration to author responses. A physical PB meeting was held as a satellite event of ICSE 2013, in San Francisco, during May 24–25, 2013, to finalize the selection of papers by making acceptance decisions on those papers for which online PC discussions did not converge on a clear decision.

For MODELS 2013, we received a total of 180 full papers from the 236 abstracts submitted. From these, 130 papers were submitted to the Foundations Track and 50 to the Applications Track. Out of the 130 papers, the PC and PB accepted 30 papers and invited four for resubmission. Of the 50 Applications Track papers, 12 were accepted and one was invited to be improved and resubmitted. All five papers invited for resubmission were accepted after a second round of evaluations. This results in a total number of 47 papers accepted, with a 26% acceptance rate.

The PC chairs also conducted an author survey to obtain feedback on the quality of reviews. We received 112 responses from authors of Foundations Track papers and 44 responses from Applications Track authors. Authors were asked to evaluate the usefulness of the reviews. Over 76% of the respondents indicated that their reviews were either useful or very useful. Feedback like this helps us determine the effectiveness of the MODELS review process and we greatly appreciate the effort of the authors who submitted completed survey forms.

In addition to the invited talks and technical sessions, MODELS 2013 featured the traditional set of satellite events which this year included 18 workshops, ten tutorials, two sessions dedicated to tool demonstrations, one panel on “Abstraction Challenges,” and one evening session devoted to posters of emergent ideas. The Educators and Doctoral Symposia also occurred again at MODELS 2013, providing the premier venue for both educators and doctoral students working on topics related to model-driven engineering. For the first time in its history, MODELS hosted the ACM Student Research Competition (SRC), sponsored by Microsoft Research. The ACM SRC is a forum for undergraduate and graduate students to showcase their research, exchange ideas, and improve their communication skills while competing for prizes at MODELS 2013.

Organizing MODELS 2013 involved the considerable effort of over 100 hard-working members of the Organizing Committee and the various selection committees. A list of the Organizing Committee and selection committees for the satellite events can be found on the MODELS 2013 website (http://www.modelsconference.org/). We thank them all for their expertise, time, and commitment across several years of planning and coordination.

We are particularly grateful to the Foundations PC, the Applications PC and the PB for their continued observance in maintaining the quality of the MODELS program. We also thank the additional reviewers who contributed to the MODELS 2013 review process. We extend special thanks to Gregor Engels (MODELS Steering Committee Chair) and all the other members of the Steering Committee for their support during the planning and execution of MODELS 2013. We appreciate the helpful assistance from Geri Georg, who served as the
MODELS Steering Committee Chair during the early phases of the MODELS 2013 formation.

Our special gratitude goes to the local Miami team at Florida International University, including the excellent group of student volunteers, for their hard work behind the scenes to make this conference happen. Organizing a conference represents almost two years of hard work and complete dedication.

We thank all the authors who submitted papers to MODELS, and we congratulate those authors whose papers appear in these proceedings. These papers reflect the quality of the current state of the art in software modeling research and practice.

A special word of gratitude is due to Richard van de Stadt for his CyberChair support. He went far beyond the call of duty in providing innovative responses to the many challenges presented him and was a tireless collaborator and companion on this exciting journey.

No conference would be viable without sponsors. We sincerely thank all of our generous supporters, especially our gold sponsors CEA-List and Microsoft Research, silver sponsors Intentional Software, Tata Consulting Services and Siemens, and the rest of the contributing and supporting companies and organizations including the OMG, Springer, CEUR, Greater Miami Convention and Visitors Bureau, and society sponsors IEEE, IEEE Computer Society, ACM and ACM SIGSOFT.

We are convinced that everyone had both an exciting and stimulating time in Miami, and left with new ideas and enthusiasm to broaden the MODELS community and strengthen the application of models in the engineering of software systems.

August 2013

Ana Moreira
Bernhard Schätz
Jeff Gray
Antonio Vallecillo
Peter Clarke
Organization

General Chairs

Jeff Gray University of Alabama, USA
Antonio Vallecillo Universidad de Málaga, Spain

Foundations Track Program Chair

Ana Moreira Universidade Nova de Lisboa, Portugal

Applications Track Program Chair

Bernhard Schätz Fortiss, and Technische Universität München, Germany

Local Chair

Peter Clarke Florida International University, USA

Industry Liaison

Magnus Christerson Intentional Software, USA

Workshop Chairs

Fabio Costa Universidade Federal de Goiás, Brazil
Eugene Syriani University of Alabama, USA

Tutorial Chairs

Jordi Cabot École des Mines de Nantes/Inria, France
Jörg Kienzle McGill University, Canada

Panel Chairs

Silvia Abrahão Universitat Politècnica de València, Spain
Isidro Ramos Universitat Politècnica de València, Spain
Demonstration Chairs

Yan Liu
Concordia University, Canada

Steffen Zschaler
King’s College London, UK

Poster Chairs

Benoit Baudry
Inria/IRISA, France

Sudipto Ghosh
Colorado State University, USA

ACM Student Research Competition Chairs

Ethan Jackson
Microsoft Research, USA

Davide Di Ruscio
Università dell’Aquila, Italy

Publicity Chairs

James Hill
IUPUI, USA

Martina Seidl
Johannes Kepler University, Austria

Social Media Chairs

Ralf Lämmel
Universität Koblenz-Landau, Germany

Vadim Zaytsev
CWI, The Netherlands

Publications Chair

Manuel Wimmer
Vienna University of Technology, Austria

Educators’ Symposium Chairs

Perdita Stevens
University of Edinburgh, UK

Timothy Lethbridge
University of Ottawa, Canada

Doctoral Symposium Chair

Martin Gogolla
University of Bremen, Germany

Student Volunteers Chair

Jonathan Corley
University of Alabama, USA

Raymond Chang Lau
Florida International University, USA
Web Chair

Robert Tairas Vanderbilt University, USA

Program Board

Lionel Briand SnT Centre, Université du Luxembourg, Luxembourg
Jean-Michel Bruel CNRS/IRIT, Université de Toulouse, France
Krzysztof Czarnecki University of Waterloo, Canada
Jürgen Dingel Queen’s University, Canada
Gregor Engels University of Paderborn, Germany
Robert France Colorado State University, USA
Martin Gogolla University of Bremen, Germany
Jean-Marc Jézéquel IRISA, France
Richard Paige University of York, UK
Dorina Petriu Carleton University, Canada
Bernhard Rumpe RWTH Aachen University, Germany
Jon Whittle Lancaster University, UK

Program Committee: Foundations Track

Vasco Amaral Universidade Nova de Lisboa, Portugal
Daniel Amyot University of Ottawa, Canada
João Araújo Universidade Nova de Lisboa, Portugal
Colin Atkinson University of Mannheim, Germany
Mira Balaban Ben-Gurion University, Israel
Benoit Baudry INRIA, France
Nelly Bencomo INRIA Paris-Rocquencourt, France
Xavier Blanc Université Bordeaux, France
Ruth Breu University of Innsbruck, Austria
Jordi Cabot École des Mines de Nantes/Inria, France
Alessandra Cavarra University of Oxford, UK
Siobhán Clarke Trinity College Dublin, Ireland
Jane Cleland-Huang DePaul University, USA
Juan de Lara Universidad Autónoma de Madrid, Spain
Alexander Egyed Johannes Kepler University, Austria
Rik Eshuis Eindhoven University of Technology, The Netherlands
Lidia Fuentes Universidad de Málaga, Spain
Alessandro Garcia PUC-Rio, Brazil
Geri Georg Colorado State University, USA
Sébastien Gérard CEA List, France
Holger Giese
Hasso Plattner Institute,
University of Potsdam, Germany

John Grundy
Swinburne University of Technology, Australia

Øystein Haugen
SINTEF, Norway

Zhenjiang Hu
National Institute of Informatics, Japan

Heinrich Hussmann
Ludwig-Maximilians-Universität München,
Germany

Gerti Kappel
Vienna University of Technology, Austria

Gabor Karsai
Vanderbilt University, USA

Ingolf Krueger
UC San Diego, USA

Thomas Kühne
Victoria University of Wellington, New Zealand

Yvan Labiche
Carleton University, Canada

Philippe Lahire
University of Nice, France

Yves Le Traon
University of Luxembourg, Luxembourg

Hong Mei
Peking University, China

Dragan Milicev
University of Belgrade, Serbia

Raffaela Mirandola
Politecnico di Milano, Italy

Pierre-Alain Muller
University of Haute-Alsace, France

Gunter Mussbacher
Carleton University, Canada

Ileana Ober
IRIT Université de Toulouse, France

Alfonso Pierantonio
Università degli Studi dell’Aquila, Italy

Gianna Reggio
DIBRIS - University of Genoa, Italy

Gustavo Rossi
LIFIA, Argentina

Pete Sawyer
University of Lancaster, UK

Andy Schürr
Technische Universität Darmstadt, Germany

Arnor Solberg
SINTEF, Norway

Friedrich Steimann
Fernuniversität in Hagen, Germany

Gabriele Taentzer
Philippus-Universität Marburg, Germany

Dániel Varró
Budapest University of Technology and Economics, Hungary

Michael Whalen
University of Minnesota, USA

Tao Yue
Simula Research Laboratory, Norway

Steffen Zschaler
King’s College London, UK

Program Committee: Applications Track

Silvia Abrahão
Universitat Politècnica de València, Spain

Alfred Aue
Cap Gemini, Germany

Balbir Barn
Middlesex University, UK

Brian Berenbach
Siemens AG, USA

Fernando Brito e Abreu
DCTI, ISCTE-IUL, Portugal

Tony Clark
Middlesex University, UK

Alessandro Garcia
PUC-Rio, Brazil

Andreas Graf
itemis AG, Germany

Pavel Hruby
CSC, Denmark
Jürgen Kazmeier
Cornel Klein
Tihamer Levendovszky
Pieter Mosterman
Oscar Pastor
Isabelle Perseil
Rob Pettit
Alexander Pretschner
Wolfram Schulte
Bran Selic
Ketil Stolen
Stephan Thesing
Juha-Pekka Tolvanen
Mario Trapp
Markus Völter

Siemens AG, Germany
Siemens AG, Germany
Vanderbilt University, USA
MathWorks, USA
Universitat Politècnica de València, Spain
INSERM, France
The Aerospace Corporation, USA
Technische Universität München, Germany
Microsoft, USA
Malina Software Corporation, Canada
SINTEF, Norway
Eurocopter Deutschland GmbH, Germany
MetaCase, Finland
Fraunhofer IESE, Germany
independent/itemis, Germany

Steering Committee

Gregor Engels (Chair)
Lionel Briand (Vice Chair)
Silvia Abrahão
Jean Bézivin
Ruth Breu
Jean-Michel Bruel
Krzysztof Czarnecki
Laurie Dillon
Jürgen Dingel
Geri Georg
Jeff Gray
Øystein Haugen
Heinrich Husmann
Thomas Kühne
Ana Moreira
Pierre-Alain Muller
Oscar Nierstrasz
Dorina Petriu
Rob Pettit
Gianna Reggio
Bernhard Schätz
Wolfram Schulte
Andy Schürr
Steve Seidman
Jon Whittle

University of Paderborn, Germany
University of Luxembourg, Luxembourg
Universitat Politècnica de València, Spain
University of Nantes, France
University of Innsbruck, Austria
IRIT, France
University of Waterloo, Canada
Michigan State University, USA
Queen’s University, Canada
Colorado State University, USA
University of Alabama, USA
SINTEF, Norway
University of Munich, Germany
Victoria University of Wellington, New Zealand
Universidade Nova de Lisboa, Portugal
University of Haute-Alsace, France
University of Bern, Switzerland
Carleton University, Canada
The Aerospace Corp., USA
University of Genoa, Italy
Technical University of Munich, Germany
Microsoft Research, USA
Technical University of Darmstadt, Germany
Texas State University, USA
Lancaster University, UK
Gold Sponsors

Microsoft Research

Silver Sponsors

Organizational Sponsors

Additional Reviewers

Mathieu Acher, Petra Brosch
Saeed Ahmadi Behnam, Fabian Büttner
André Alexandersen Hauge, Juan Cadavid
Abeer Al-Humaimeedy, Franck Chauvell
Shaukat Ali, Bruno Cafeo
Anthony Anjorin, Emanuela Cartaxo
Nesa Asoudeh, Fernando Castor
Thomas Baar, Dan Chiorean
Ankica Barisic, Antonio Cicchetti
Bruno Barroca, Harald Cichos
Amel Bennaceur, Elder Cirilo
Gregor Berg, Mickael Clavreul
Gábor Bergmann, Roberta Coelho
Alexander Bergmayr, Philippe Collet
Thomas Beyhl, Arnaud Cuccuru
Erwan Bousse, Duc-Hanh Dang
<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frederik Deckwerth</td>
<td>Massimiliano Menarini</td>
</tr>
<tr>
<td>Andreas Demuth</td>
<td>Zoltán Micskei</td>
</tr>
<tr>
<td>Johannes Dyck</td>
<td>Dongyue Mou</td>
</tr>
<tr>
<td>Maged Elaasar</td>
<td>Tejeddine Mouelhi</td>
</tr>
<tr>
<td>Brian Elvesæter</td>
<td>Stefan Neumann</td>
</tr>
<tr>
<td>Gencer Erdogan</td>
<td>Phu Nguyen</td>
</tr>
<tr>
<td>Claudiu Farcas</td>
<td>Alexander Nöhrrer</td>
</tr>
<tr>
<td>Emilia Farcas</td>
<td>Toacy Oliveira</td>
</tr>
<tr>
<td>João Faria</td>
<td>Aida Omerovic</td>
</tr>
<tr>
<td>Kleiner Farias</td>
<td>Ana Paiva</td>
</tr>
<tr>
<td>Ali Fatolahi</td>
<td>Marc Palyart</td>
</tr>
<tr>
<td>Adrián Fernández</td>
<td>Mike Papadakis</td>
</tr>
<tr>
<td>Nicolas Ferry</td>
<td>Sven Patzina</td>
</tr>
<tr>
<td>Martin Fleck</td>
<td>Gilles Perrouin</td>
</tr>
<tr>
<td>Frédéric Fondement</td>
<td>Hendrik Radke</td>
</tr>
<tr>
<td>László Gönczy</td>
<td>Isidro Ramos</td>
</tr>
<tr>
<td>Sebastian Gabmeyer</td>
<td>István Ráth</td>
</tr>
<tr>
<td>Nadia Gámez</td>
<td>Daniel Ratiu</td>
</tr>
<tr>
<td>Achraf Ghabi</td>
<td>Alexander Reder</td>
</tr>
<tr>
<td>Cláudio Gomes</td>
<td>Filippo Ricca</td>
</tr>
<tr>
<td>Miguel Goulão</td>
<td>Alessandro Rossini</td>
</tr>
<tr>
<td>Stefanie Grewenig</td>
<td>Jesús Sánchez Cuadrado</td>
</tr>
<tr>
<td>Everton Guimarães</td>
<td>Nicolas Sannier</td>
</tr>
<tr>
<td>Annegret Habel</td>
<td>Fredrik Seehusen</td>
</tr>
<tr>
<td>Evelyn Haslinger</td>
<td>Filippo Seracini</td>
</tr>
<tr>
<td>Regina Hebig</td>
<td>Luis Silva</td>
</tr>
<tr>
<td>Ábel Hegedűs</td>
<td>Bjornar Solhaug</td>
</tr>
<tr>
<td>Christopher Hénard</td>
<td>Daniel Strüber</td>
</tr>
<tr>
<td>Stephan Hildebrandt</td>
<td>Arnon Sturm</td>
</tr>
<tr>
<td>Ákos Horváth</td>
<td>Wuliang Sun</td>
</tr>
<tr>
<td>Florian Hözl</td>
<td>Sabine Teufl</td>
</tr>
<tr>
<td>Emílio Insfran</td>
<td>Alessandro Tiso</td>
</tr>
<tr>
<td>Muhammad Zohaib Iqbal</td>
<td>Juha-Pekka Tolvanen</td>
</tr>
<tr>
<td>Martin Johansen</td>
<td>Damiano Cosimo Torre</td>
</tr>
<tr>
<td>Teemu Kanstren</td>
<td>Catia Trubiani</td>
</tr>
<tr>
<td>Jacques Klein</td>
<td>Sara Tucci-Piergiovanni</td>
</tr>
<tr>
<td>Uira Kulesza</td>
<td>Gergely Varro</td>
</tr>
<tr>
<td>Leen Lambers</td>
<td>Steffen Vaupel</td>
</tr>
<tr>
<td>Arnaud Lapître</td>
<td>Thomas Vogel</td>
</tr>
<tr>
<td>Marius Lauder</td>
<td>Shuai Wang</td>
</tr>
<tr>
<td>Yan Li</td>
<td>Sebastian Wilms</td>
</tr>
<tr>
<td>Malte Lochau</td>
<td>Manuel Wimmer</td>
</tr>
<tr>
<td>Azzam Marae</td>
<td>Ernest Wozniak</td>
</tr>
<tr>
<td>Tanja Mayerhofer</td>
<td>Qin Zhang</td>
</tr>
<tr>
<td>Hossein Mehrfardx</td>
<td>Xiang Zhang</td>
</tr>
</tbody>
</table>
Keynote Abstracts
The Magic of Software

Charles Simonyi

Intentional Software, USA

Abstract. Software allows for many models of computation. We create models to understand and reason about these computations (e.g., did the aircraft change its course because there was a hill in front of it or because a model indicated the presence of a hill?). As computers and software become more and more ubiquitous, the tangible world and computer models of the world are merging. We are re-designing our basic systems from networks, cars and aircrafts, to financial and health systems to reduce their costs and increase their effectiveness using software that, by necessity, must incorporate a model of the environment and its characteristics. Models can also take us outside of this reality and let us explore alternative timelines — what we call simulation. Today, programming languages are the primary way to communicate our intentions of these systems in software. Notation, syntax and semantics make the mental programming language models concrete for us as humans. But the computer does not really need the notation, syntax and semantics models of the software in the same way as we humans do. In this talk, we will trace the magic of software that enabled this progression from Moore’s law, through computer languages, to the Digital Artifacts of today. We will investigate it carefully and come to some surprising conclusions that question the mainstream thinking around software models. What if we let go of some of our learned beliefs about software models and think differently about models of instructing computers?
Model-Based Development of Software:
A Panacea or Academic Poppycock

Constance Heitmeyer

Center for High Assurance Computer Systems
Naval Research Laboratory, USA

Abstract. In recent years, the use of models in developing complex software systems has been steadily increasing. Advocates of model-based development argue that models can help reduce the time, cost, and effort needed to build software systems which satisfy their requirements and that model-based approaches are effective not only in system development but throughout a system’s life-time. Thus the problem addressed by researchers in software and system modeling encompasses not only the original construction of a complex system but its complete life-cycle. This talk will address significant issues in model-based system and software development, including: What is the current and future role of models in software system development? What benefits can we obtain from the use of models not only in development but throughout the system life-cycle? What are the barriers to using models in software system development and evolution? What are the major challenges for system and software modeling researchers during the next decade?
Abstract. Single large project courses with clients from industry have been established as capstone courses in many software engineering curricula. They are considered a good way of teaching industry relevant software engineering practices, in particular model-based software development.

One particular challenge is how to balance between modeling and timely delivery. If we focus too much on modeling, the students do not have enough time to deliver the system ("analysis paralysis"). If we focus too much on the delivery of the system, the quality of the models usually goes down the drain. Another challenge is the balance between informal models intended for human communication and specification models intended for CASE tools. I argue that teachers often put too much weight on the rigor of the models, and less on the creative and iterative aspects of modeling. Modeling should be allowed to be informal, incomplete and inconsistent, especially during the early phases of software development. I have been teaching capstone courses for almost 25 years, initially at the senior and junior level. During this time excellent automatic build and release management tools have been developed. They reduce the need for heroic delivery efforts at the end of a course, especially if they are coupled with agile methods, allowing the teacher to spend more time on the creative aspects of modeling. I will use several examples from my courses to demonstrate how it is possible to include informal modeling techniques in project courses with real customers involving a large number of students at the sophomore and even freshmen level without compromising the ideas of model-driven software development.
Table of Contents

Tool Support 1

Industrial Adoption of Model-Driven Engineering: Are the Tools Really the Problem? .. 1
Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and Rogardt Heldal

Generic Model Assist ... 18
Friedrich Steimann and Bastian Ulke

Adding Spreadsheets to the MDE Toolkit 35
Mártiñs Francis, Dimitrios S. Kolovos, Nicholas Matragkas, and Richard F. Paige

Dependability

Model-Driven Extraction and Analysis of Network Security Policies 52
Salvador Martínez, Joaquin García-Alfaro, Frédéric Cuppens, Nora Cuppens-Boulahia, and Jordi Cabot

SafetyMet: A Metamodel for Safety Standards 69
Jose Luis de la Vara and Rajwinder Kaur Panesar-Walawege

A Generic Fault Model for Quality Assurance 87
Alexander Pretschner, Dominik Holling, Robert Eschbach, and Matthias Gemmar

Comprehensibility

Towards an Operationalization of the “Physics of Notations” for the Analysis of Visual Languages ... 104
Harald Störrle and Andrew Fish

Teaching Model Driven Engineering from a Relational Database Perspective ... 121
Don Batory, Eric Latimer, and Maider Azanza

Big Metamodels Are Evil: Package Unmerge - A Technique for Downsizing Metamodels .. 138
Frédéric Fondement, Pierre-Alain Muller, Laurent Thiry, Brice Wittmann, and Germain Forestier
Tool Support 2

Integrating Modeling Tools in the Development Lifecycle with OSLC: A Case Study ... 154
Maged Elaasar and Adam Neal

Recommending Auto-completions for Software Modeling Activities 170
Tobias Kuschke, Patrick Mäder, and Patrick Rempel

Automatically Searching for Metamodel Well-Formedness Rules in Examples and Counter-Examples .. 187
Martin Faunes, Juan Cadavid, Benoit Baudry, Houari Sahraoui, and Benoit Combemale

Testing

Testing M2T/T2M Transformations .. 203
Manuel Wimmer and Loli Burgueño

An Approach to Testing Java Implementation against Its UML Class Model ... 220
Hector M. Chavez, Wuwei Shen, Robert B. France, and Benjamin A. Mechling

Automated Test Case Selection Using Feature Model: An Industrial Case Study ... 237
Shuai Wang, Arnaud Gotlieb, Shaukat Ali, and Marius Liaaen

Semantics Evolution 1

Customizable Model Migration Schemes for Meta-model Evolutions with Multiplicity Changes ... 254
Gabriele Taentzer, Florian Mantz, Thorsten Arendt, and Yngve Lamo

Fine-Grained Software Evolution Using UML Activity and Class Models ... 271
Walter Cazzola, Nicole Alicia Rossini, Mohammed Al-Refai, and Robert B. France

Supporting the Co-evolution of Metamodels and Constraints through Incremental Constraint Management 287
Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed

Verification

Model Checking of UML-RT Models Using Lazy Composition 304
Karolina Zurowska and Juergen Dingel
Behavioural Verification in Embedded Software, from Model to Source Code ... 320
Anthony Fernandes Pires, Thomas Polacsek, Virginie Wiels, and Stéphane Duprat

Formal Verification Integration Approach for DSML 336
Faiez Zalila, Xavier Crécut, and Marc Pantel

Product Lines

Composing Your Compositions of Variability Models 352
Mathieu Acher, Benoît Combemale, Philippe Collet, Olivier Barais, Philippe Lahire, and Robert B. France

Constraints: The Core of Supporting Automated Product Configuration of Cyber-Physical Systems .. 370
Kunming Nie, Tao Yue, Shaukat Ali, Li Zhang, and Zhiqiang Fan

Defining and Validating a Multimodel Approach for Product Architecture Derivation and Improvement 388
Javier González-Huerta, Emilio Insfrán, and Silvia Abrahão

Evolution 2

Evolution of the UML Interactions Metamodel 405
Marc-Florian Wendland, Martin Schneider, and Øystein Haugen

A Graph-Pattern Based Approach for Meta-Model Specific Conflict Detection in a General-Purpose Model Versioning System 422
Asha Rajbhoj and Sreedhar Reddy

On the Complex Nature of MDE Evolution 436
Regina Hebig, Holger Giese, Florian Stallmann, and Andreas Seibel

Semantics

Simplification and Correctness of UML Class Diagrams – Focusing on Multiplicity and Aggregation/Composition Constraints 454
Mira Balaban and Azzam Maraee

Specification of Cyber-Physical Components with Formal Semantics – Integration and Composition 471
Gabor Simko, David Lindecker, Tihamer Levendovszky, Sandeep Neema, and Janos Sztipanovits

Endogenous Metamodeling Semantics for Structural UML 2 Concepts .. 488
Lars Hamann and Martin Gogolla
XXVI Table of Contents

Domain-Specific Modeling Languages

Computer Assisted Integration of Domain-Specific Modeling Languages Using Text Analysis Techniques .. 505
 Florian Noyrit, Sébastien Gérard, and François Terrier

Towards the Notation-Driven Development of DSMLs 522
 Laurent Wouters

Validation of Derived Features and Well-Formedness Constraints in DSLs: By Mapping Graph Queries to an SMT-Solver 538
 Oszkár Semeráth, Ákos Horváth, and Dániel Varró

Models@RT

Self-adaptation with End-User Preferences: Using Run-Time Models and Constraint Solving ... 555
 Hui Song, Stephen Barrett, Aidan Clarke, and Siobhán Clarke

Runtime Model Based Management of Diverse Cloud Resources 572
 Xiaodong Zhang, Xing Chen, Ying Zhang, Yihan Wu, Wei Yao, Gang Huang, and Qiang Lin

The Semantic Web as a Software Modeling Tool: An Application to Citizen Relationship Management ... 589
 Borislav Iordanov, Assia Alexandrova, Syed Abbas, Thomas Hilpold, and Phani Upadrasta

Design and Architecture

Concern-Oriented Software Design .. 604
 Omar Alam, Jörg Kienzle, and Gunter Mussbacher

Analyzing Enterprise Models Using Enterprise Architecture-Based Ontology .. 622
 Sagar Sunkle, Vinay Kulkarni, and Suman Roychoudhury

Analyzing the Effort of Composing Design Models of Large-Scale Software in Industrial Case Studies .. 639
 Kleinner Farias, Alessandro Garcia, Jon Whittle, and Carlos Lucena

Model Transformation

Parallel Execution of ATL Transformation Rules 656
 Massimo Tisi, Salvador Martínez, and Hassene Choura
Transformation of Models Containing Uncertainty 673
 Michalis Famelis, Rick Salay, Alessio Di Sandro, and
 Marsha Chechik

Automated Verification of Model Transformations in the Automotive
Industry .. 690
 Gehan M.K. Selim, Fabian Böttner, James R. Cordy,
 Juergen Dingel, and Shige Wang

Model Analysis

Data-Flow Based Model Analysis and Its Applications 707
 Christian Saad and Bernhard Bauer

Contract-Aware Slicing of UML Class Models 724
 Wuliang Sun, Robert B. France, and Indrakshi Ray

Usability Inspection in Model-Driven Web Development:
Empirical Validation in WebML ... 740
 Adrian Fernandez, Silvia Abrahão, Emilio Insfrán, and
 Maristella Matera

System Synthesis

Model-Driven Approach for Supporting the Mapping of Parallel
Algorithms to Parallel Computing Platforms 757
 Ethem Arkın, Bedir Tekinerdogan, and Kayhan M. İmre

Compositional Synthesis of Controllers from Scenario-Based
Assume-Guarantee Specifications .. 774
 Joel Greener and Ekkart Kindler

Author Index .. 791